libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

kahng andrew b.; lienig jens; markov igor l.; hu jin - vlsi physical design: from graph partitioning to timing closure

VLSI Physical Design: From Graph Partitioning to Timing Closure

; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
86,98 €
NICEPRICE
82,63 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2014
Edizione: 2011





Trama

Design and optimization of integrated circuits are essential to the creation of new semiconductor chips, and physical optimizations are becoming more prominent as a result of semiconductor scaling. Modern chip design has become so complex that it is largely performed by specialized software, which is frequently updated to address advances in semiconductor technologies and increased problem complexities. A user of such software needs a high-level understanding of the underlying mathematical models and algorithms. On the other hand, a developer of such software must have a keen understanding of computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact.

 

"VLSI Physical Design: From Graph Partitioning to Timing Closure"

introduces and compares algorithms that are used during the physical design phase of integrated-circuit design, wherein a geometric chip layout is produced starting from an abstract circuit design. The emphasis is on essential and fundamental techniques, ranging from hypergraph partitioning and circuit placement to timing closure.


                    

   




Sommario

1 Introduction. 2 Netlist and System Partitioning. 3 Chip Planning. 4 Global and Detailed Placement. 5 Global Routing. 6 Detailed Routing. 7 Specialized Routing. 8 Timing Closure. A Solutions to Chapter Exercises. B Example CMOS Cell Layouts.





Autore

Andrew B. Kahng is Professor of CSE and ECE at UC San Diego, where he holds the endowed chair in High-Performance Computing. He has served as visiting scientist at Cadence (1995-1997) and as founder, chairman and CTO at Blaze DFM (2004-2006).

Jens Lienig is Professor of Electrical Engineering at TU Dresden. He is also the director of the Institute of Electromechanical and Electronic Design at TUD. He has worked as project manager at Tanner Research, Inc. (1996-1999) and Robert Bosch GmbH (1999-2002).

Igor L. Markov is a Professor of Electrical Engineering and Computer Science at the University of Michigan. He has worked at Google (2014-2017) and has been with Facebook since 2018.

Jin Hu was a PhD student at the Computer Science and Engineering (CSE) Division at the University of Michigan. Afterwards, she has been with IBM Corp. (2013-2017) and Bloomberg L.P.


           










Altre Informazioni

ISBN:

9789400790209

Condizione: Nuovo
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XI, 310 p.
Pagine Arabe: 310
Pagine Romane: xi


Dicono di noi