libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

kim jae kwang; shao jun - statistical methods for handling incomplete data
Zoom

Statistical Methods for Handling Incomplete Data

;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
116,98 €
NICEPRICE
111,13 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 11/2021
Edizione: Edizione nuova, 2° edizione





Note Editore

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data. Features Uses the mean score equation as a building block for developing the theory for missing data analysis Provides comprehensive coverage of computational techniques for missing data analysis Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data Describes a survey sampling application Updated with a new chapter on Data Integration Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.




Sommario

1. Introduction2. Likelihood-based Approach3. Computation4. Imputation5. Multiple Imputation6. Fractional Imputation7. Propensity Scoring Approach8. Nonignorable Missing Data9. Longitudinal and Clustered Data10. Application to Survey Sampling11. Data Integration12. Advanced Topics




Autore

Jae Kwang Kim is a LAS dean’s professor in the Department of Statistics at Iowa State University. He is a fellow of American Statistical Association (ASA) and Institute of Mathematical Statistics (IMS). He is the recipient of 2015 Gertude M. Cox award, sponsored by Washington Statistical Society and RTI international. Jun Shao is a professor in the Department of Statistics at University of Wisconsin – Madison. He is a fellow of ASA and IMS, a former president of International Chinese Statistical Association and currently the founding editor of Statistical Theory and Related Fields.










Altre Informazioni

ISBN:

9780367280543

Condizione: Nuovo
Dimensioni: 9.25 x 6.25 in Ø 1.50 lb
Formato: Copertina rigida
Illustration Notes:6 b/w images, 28 tables and 6 line drawings
Pagine Arabe: 364
Pagine Romane: xvi


Dicono di noi