libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

rios insua david (curatore); ruggeri fabrizio (curatore) - robust bayesian analysis

Robust Bayesian Analysis

;




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer US

Pubblicazione: 09/2000
Edizione: Softcover reprint of the original 1st ed. 2000





Trama

Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in­ terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con­ cerns foundational aspects and describes decision-theoretical axiomatisa­ tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.




Sommario

1 Bayesian Robustness.- 2 Topics on the Foundations of Robust Bayesian Analysis.- 3 Global Bayesian Robustness for Some Classes of Prior Distributions.- 4 Local Robustness in Bayesian Analysis.- 5 Global and Local Robustness Approaches: Uses and Limitations.- 6 On the Use of the Concentration Function in Bayesian Robustness.- 7 Likelihood Robustness.- 8 Ranges of Posterior Expected Losses and ?—Robust Actions.- 9 Computing Efficient Sets in Bayesian Decision Problems.- 10 Stability of Bayes Decisions and Applications.- 11 Robustness Issues in Bayesian Model Selection.- 12 Bayesian Robustness and Bayesian Nonparametrics.- 13 ?-Minimax: A Paradigm for Conservative Robust Bayesians.- 14 Linearization Techniques in Bayesian Robustness.- 15 Methods for Global Prior Robustness under Generalized Moment Conditions.- 16 Efficient MCMC Schemes for Robust Model Extensions Using Encompassing Dirichlet Process Mixture Models.- 17 Sensitivity Analysis in IctNeo.- 18 Sensitivity of Replacement Priorities for Gas Pipeline Maintenance.- 19 Robust Bayesian Analysis in Medical and Epidemiological Settings.- 20 A Robust Version of the Dynamic Linear Model with an Economic Application.- 21 Prior Robustness in Some Common Types of Software Reliability Model.










Altre Informazioni

ISBN:

9780387988665

Condizione: Nuovo
Collana: Lecture Notes in Statistics
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XIII, 422 p. 6 illus.
Pagine Arabe: 422
Pagine Romane: xiii


Dicono di noi