Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
Introduction.- Regression Models.- The Classical Linear Model.- Extensions of the Classical Linear Model.- Generalized Linear Models.- Categorical Regression Models.- Mixed Models.- Nonparametric Regression.- Structured Additive Regression.- Quantile Regression.- A Matrix Algebra.- B Probability Calculus and Statistical Inference.- Bibliography.- Index.
Ludwig Fahrmeir is Professor emeritus at the Department of Statistics at Ludwig-Maximilians-University Munich. From 1995 to 2006 he was speaker of the Collaborative Research Center 'Statistical Analysis of Discrete Data', supported financially by the German National Science Foundation. His main research interests are semiparametric regression, longitudinal data analysis and spatial statistics, with applications ranging from social science and risk management to public health and neuroscience.
Thomas Kneib is Professor for Statistics at Georg August University Göttingen, Germany, where he is speaker of the interdisciplinary Centre for Statistics and a Research Training Group on "Scaling Problems in Statistics". He received his PhD in Statistics at Ludwig-Maximilians-University Munich and, during his PostDoc phase, has been Visiting Professor for Applied Statistics at the University of Ulm and Substitute Professor for Statistics at Georg-August-University Göttingen. From 2009 until 2011 he has been Professor for Applied Statistics at Carl von Ossietzky University Oldenburg. His main research interests include semiparametric regression, spatial statistics and quantile regression.
Stefan Lang is Professor for Applied Statistics at University of Innsbruck, Austria. He received his PhD at Ludwig-Maximilians-University Munich. From 2005 to 2006 he has been Professor for Statistics at University of Leipzig. He is currently editor of Advances of Statistical Analysis and Associate Editor of Statistical Modelling. His main research interests include semiparametric and spatial regression, multilevel modelling and complex Bayesian models, with applications among others in environmetrics, marketing science, real estate and actuarial science.
Brian D. Marx is a full professor in the Department of Experimental Statisitics at Louisiana State University. His main research interests include P-spline smoothiing, ill-conditioned regression problems, and high-dimensional chemometric applications. He is currently serving as coordinating editor for the journal Statistical Modelling and is past chair of the Statistical Modelling Society.
Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.