libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

tarnowska katarzyna; ras zbigniew w.; daniel lynn - recommender system for improving customer loyalty

Recommender System for Improving Customer Loyalty

; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 03/2019
Edizione: 1st ed. 2020





Trama

This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience.

The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to “learn” from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to “weigh” these actions and determine which ones would have a greater impact.





Sommario

Chapter 1: Introduction.- Chapter 2: Customer Loyalty Improvement.- Chapter 3: State of the Art.- Chapter 4: Background.- Chapter 5: Overview of Recommender System Engine.- Chapter 6: Visual Data Analysis.- Chapter 7: Improving Performance of Knowledge Miner.- Chapter 8: Recommender System Based on Unstructured Data.- Chapter 9: Customer Attrition Problem.- Chapter 10: Conclusion.





Autore












Altre Informazioni

ISBN:

9783030134372

Condizione: Nuovo
Collana: Studies in Big Data
Dimensioni: 235 x 155 mm Ø 454 gr
Formato: Copertina rigida
Illustration Notes:XVIII, 124 p. 40 illus., 30 illus. in color.
Pagine Arabe: 124
Pagine Romane: xviii


Dicono di noi