libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

dos santos gromicho j.a. - quasiconvex optimization and location theory
Zoom

Quasiconvex Optimization and Location Theory




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2011
Edizione: 1998





Trama

grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro­ grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C­ programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com­ positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason why so much effort has been placed into finding an exhaustive classification of the different weak forms of convexity, establishing a new definition just to satisfy some desirable property in the most general way possible. This book does not aim at all the subtleties of the different generalizations of convexity, but concentrates on the most general of them all, quasiconvex programming. Chapter 5 shows clearly where the real difficulties appear.




Sommario

1 Introduction.- 2 Elements of Convexity.- 2.1 Generalities.- 2.2 Convex sets.- 2.3 Convex functions.- 2.4 Quasiconvex functions.- 2.5 Other directional derivatives.- 3 Convex Programming.- 3.1 Introduction.- 3.2 The ellipsoid method.- 3.3 Stopping criteria.- 3.4 Computational experience.- 4 Convexity in Location.- 4.1 Introduction.- 4.2 Measuring convex distances.- 4.3 A general model.- 4.4 A convex location model.- 4.5 Characterizing optimality.- 4.6 Checking optimality in the planar case.- 4.7 Computational results.- 5 Quasiconvex Programming.- 5.1 Introduction.- 5.2 A separation oracle for quasiconvex functions.- 5.3 Easy cases.- 5.4 When we meet a “bad” point.- 5.5 Convergence proof.- 5.6 An ellipsoid algorithm for quasiconvex programming.- 5.7 Improving the stopping criteria.- 6 Quasiconvexity in Location.- 6.1 Introduction.- 6.2 A quasiconvex location model.- 6.3 Computational results.- 7 Conclusions.










Altre Informazioni

ISBN:

9781461333289

Condizione: Nuovo
Collana: Applied Optimization
Dimensioni: 240 x 160 mm
Formato: Brossura
Illustration Notes:XXII, 219 p.
Pagine Arabe: 219
Pagine Romane: xxii


Dicono di noi