Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This book covers new technologies and methods related to models for short-term forecasting of electricity imbalances in the IPS of Ukraine, taking into account the impact of forecasts of energy production from renewable sources on the accuracy of the imbalance forecast. The book proposed architecture and mathematical model of an artificial neural network for deep learning forecasting of short-term electricity imbalances using hourly data. Using a model to aggregate data with an hourly resolution followed by forecasting to reduce forecast error, the quasi-dynamic modeling method was used to analyze the impact of periodic generation on the network. The application of quasi-dynamic modeling also allows taking into account the system load curve, generation profile, storage system, as well as renewable energy sources (RES) operation in this area. The use of models makes it possible to achieve realistic estimates of generation for the required period. The book considers a local hybrid renewable energy system (HRES) based on different types of RES, which is more efficient than a system with one type of source.
Development and Utilization of a Quasi-Dynamic Model for Power System Analysis.- On Effective Use’s Ensuring of High-Voltage Electrical Networks under Non-Full Phase Operational Conditions.- Constrained Multi-Criteria Optimization of the Hydroelectric Power Plant Schedule for Participation in the Day-Ahead Market of Ukraine.- Analysis of Global Trends in the Development of Energy Storage Systems and Prospects for Their Implementation in Ukraine.- Short-Term Forecasting of Imbalances in the IPS of Ukraine.- Air-Gap Sensors for Hydro Generators and Techniques for Air-Gap Eccentricity Fault Detection and Estimation.- Voltage Control in Electrical Grids with Virtual Power Plants with Variable Load on PV Generation.
Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.