libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

taylor michael e. - partial differential equations iii

Partial Differential Equations III Nonlinear Equations




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
216,98 €
NICEPRICE
206,13 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 12/2012
Edizione: Softcover reprint of hardcover 2nd ed. 2011





Trama

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis




Autore

Michael E. Taylor is a Professor at University of North Carolina in the Department of Mathematics.










Altre Informazioni

ISBN:

9781461427414

Condizione: Nuovo
Collana: Applied Mathematical Sciences
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XXII, 715 p.
Pagine Arabe: 715
Pagine Romane: xxii


Dicono di noi