libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro
ARGOMENTO:  BOOKS > INFORMATICA > COMPUTERS > ALTRI

saad david (curatore) - on-line learning in neural networks

On-Line Learning in Neural Networks




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
55,98 €
NICEPRICE
53,18 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 07/2009





Note Editore

On-line learning is one of the most powerful and commonly used techniques for training large layered networks and has been used successfully in many real-world applications. Traditional analytical methods have been recently complemented by ones from statistical physics and Bayesian statistics. This powerful combination of analytical methods provides more insight and deeper understanding of existing algorithms and leads to novel and principled proposals for their improvement. This book presents a coherent picture of the state-of-the-art in the theoretical analysis of on-line learning. An introduction relates the subject to other developments in neural networks and explains the overall picture. Surveys by leading experts in the field combine new and established material and enable non-experts to learn more about the techniques and methods used. This book, the first in the area, provides a comprehensive view of the subject and will be welcomed by mathematicians, scientists and engineers, whether in industry or academia.




Sommario

Foreword C. Bishop; 1. Introduction D. Saad; 2. On-line learning and stochastic approximations Léon Bottou; 3. Exact and perturbative solutions for the ensemble dynamics Todd Leen; 4. A statistical study of on-line learning Noboru Murata; 5. On-line learning in switching and drifting environments Klaus-Robert Mueller, Andreas Ziehe, Noboru Murata and Shun-ichi Amari; 6. Parameter adaptation in stochastic optimization Luis B. Almeida, Thibault Langlois, José D. Amaral and Alexander Plakhov; 7. Optimal on-line learning for multilayer neural networks David Saad and Magnus Rattray; 8. Universal asymptotics in committee machines with tree architecture Mauro Copelli and Nestor Caticha; 9. Incorporating curvature information in on-line learning Magnus Rattray and David Saad; 10. Annealed on-line learning in multilayer networks Siegfried Bös and Shun-ichi Amari; 11. On-line learning of prototypes and principal components Michael Biehl, Ansgar Freking, Matthias Hölzer, Georg Reents and Enno Schlösser; 12. On-line learning with time-correlated patterns Tom Heskes and Wim Wiegerinck; 13. On-line learning from finite training sets David Barber and Peter Sollich; 14. Dynamics of supervised learning with restricted training sets Anthony C. C. Coolen and David Saad; 15. On-line learning of a decision boundary with and without queries Yoshiyuki Kabashima and Shigeru Shinomoto; 16. A Bayesian approach to on-line learning Manfred Opper; 17. Optimal perception learning: an on-line Bayesian approach Sara A. Solla and Ole Winther.




Prefazione

On-line learning is one of the most commonly used techniques for training large layered networks. Traditional methods have been recently complemented by ones from statistical physics and Bayesian statistics to provide more insight and deeper understanding of existing algorithms. This book presents a coherent picture of the state-of-the-art.










Altre Informazioni

ISBN:

9780521117913

Condizione: Nuovo
Collana: Publications of the Newton Institute
Dimensioni: 229 x 23 x 152 mm Ø 600 gr
Formato: Brossura
Illustration Notes:40 b/w illus.
Pagine Arabe: 412


Dicono di noi