libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

greblicki wlodzimierz; pawlak miroslaw - nonparametric system identification

Nonparametric System Identification

;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
67,98 €
NICEPRICE
64,58 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 10/2012





Note Editore

Presenting a thorough overview of the theoretical foundations of non-parametric system identification for nonlinear block-oriented systems, this book shows that non-parametric regression can be successfully applied to system identification, and it highlights the achievements in doing so. With emphasis on Hammerstein, Wiener systems, and their multidimensional extensions, the authors show how to identify nonlinear subsystems and their characteristics when limited information exists. Algorithms using trigonometric, Legendre, Laguerre, and Hermite series are investigated, and the kernel algorithm, its semirecursive versions, and fully recursive modifications are covered. The theories of modern non-parametric regression, approximation, and orthogonal expansions, along with new approaches to system identification (including semiparametric identification), are provided. Detailed information about all tools used is provided in the appendices. This book is for researchers and practitioners in systems theory, signal processing, and communications and will appeal to researchers in fields like mechanics, economics, and biology, where experimental data are used to obtain models of systems.




Sommario

1. Introduction; 2. Discrete-time Hammerstein systems; 3. Kernel algorithms; 4. Semi-recursive kernel algorithms; 5. Recursive kernel algorithms; 6. Orthogonal series algorithms; 7. Algorithms with ordered observations; 8. Continuous-time Hammerstein systems; 9. Discrete-time Wiener systems; 10. Kernel and orthogonal series algorithms; 11. Continuous-time Wiener system; 12. Other block-oriented nonlinear systems; 13. Multivariate nonlinear block-oriented systems; 14. Semiparametric identification; Appendices.




Prefazione

This 2008 book provides an overview of non-parametric system identification for nonlinear block-oriented systems. It demonstrates possibilities of applying non-parametric regression to system identification and shows how to identify nonlinear subsystems and their characteristics with limited information. Ideal for researchers and practitioners in systems theory, signal processing, and communications, and researchers in mechanics, economics, and biology.










Altre Informazioni

ISBN:

9781107410626

Condizione: Nuovo
Dimensioni: 254 x 21 x 178 mm Ø 700 gr
Formato: Brossura
Pagine Arabe: 402


Dicono di noi