libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

kanellopoulos ioannis (curatore); wilkinson graeme g. (curatore); roli fabio (curatore); austin james (curatore) - neurocomputation in remote sensing data analysis

Neurocomputation in Remote Sensing Data Analysis Proceedings of Concerted Action COMPARES (Connectionist Methods for Pre-Processing and Analysis of Remote Sensing Data)

; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
54,98 €
NICEPRICE
52,23 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 12/2012
Edizione: Softcover reprint of the original 1st ed. 1997





Trama

Since 1994 the European Commission has been supporting activities under the Environment and Climate programme of research and technological de­ velopment, with the aim of developing cost-effective applications of satellite Earth observation (EO) for both environmental monitoring and research. This action has included support to methodological research, aimed at the development and evaluation of new techniques forming part ofthe chain of processing needed to transform data into useful information. Wherever appropriate, the Commission has emphasised the coordination of ongoing research funded at the national level, through the mechanism of concerted actions. Concerted actions are flexible and efficient means to marshal efforts at the European level for a certain period. They are proposed by groups of researchers active in a given field who have identified the added value to be gained by European cooperation, whilst continuing to pursue their own individual projects. In view of the rapid developments in the field of neural network over the last 10 years, together with the growing interest ofthe Earth observation community in this approach as a tool for data interpretation, the Commission decided in 1995 to support the concerted action COMPARES, following a proposal from a group of acknowledged European experts.




Sommario

Foreward - Introduction - Open Questions in Neurocomputing for Earth Observation - A Comparison of the Characterisation of Agricultural Land Using Singular Value Decomposition and Neural Networks - Land Cover Mapping from Remotely Sensed Data with a Neural Network: Accomodation Fuzziness - Geological Mapping Using Multi-Sensor Data: A Comparison of Methods - Application of Neural Networks and Order Statistics Filters to Speckle Noise Reduction in Remote Sensing Imaging - Neural Nets and Multichannel Image Processing Applications - Neural Networks for Classification of Ice Type Concentration from ERS-1 SAR Images. Classical Methods versus Neural Networks - A Neural Network Approach to Spectral Mixture Analysis - Comparison Between Systems of Image Interpretation - Feature Extraction for Neural Network Classifiers - Spectral Pattern Recognition by a Two-Layer Perceptron: Effects of Training Set Size - Comparison and Combination of Statistical and Neural Network Algorithms for Remote-Sensing Image Classification - Integrating the Alisa Classifier with Knowledge-Based Methods for Cadastral-Map Interpretation - A Hybrid Method for Preprocessing and Classification of SPOT Images - Testing some Connectionist Approaches for Thematic Mapping of Rural Areas - Using Artificial Recurrent Neural Nets to Identify Spectral and Spatial Patterns for Satellite Imagery Classification of Urban Areas - Dynamic Segmentation of Satellite Images Using Pulsed Coupled Neural Networks - Non-Linear Diffusion as a Neuron-Like Paradigm for Low-Level Vision - Application of the Constructive Mikado-Algorithm on Remotely Sensed Data - A Simple Neural Network Contextual Classifier - Optimising Neural Networks for Land Use Classification - High Speed Image Segmentation Using a Binary Neural Network - Efficient Processing and Analysis of Images Using Neural Networks - Selection of the Number of Clusters in Remote Sensing Images by Means of Neural Networks - A Comparative Study of Topological Feature Maps Versus Conventional Clustering for (Multi-Spectral) Scene. Identification in METEOSAT Imagery - Self Organised Maps: the Combined Utilisation of Feature and Novelty Detectors - Generalisation of Neural Network Based Segmentation. Results for Classification Purposes - Remote Sensing Applications which may be Addressed by Neural Networks Using Parallel Processing Technology - General Discussion










Altre Informazioni

ISBN:

9783642638282

Condizione: Nuovo
Dimensioni: 235 x 155 mm Ø 462 gr
Formato: Brossura
Illustration Notes:IX, 284 p.
Pagine Arabe: 284
Pagine Romane: ix


Dicono di noi