libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

chen lei zhi; nguang sing kiong; chen xiao dong - modelling and optimization of biotechnological processes

Modelling and Optimization of Biotechnological Processes Artificial Intelligence Approaches

; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 01/2006
Edizione: 2006





Trama

Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di?culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti?cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the ?nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti?cial intelligence, system identi?cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the ?nal product is achieved using modi?ed genetic algorithms to determine optimal feed rate pro?les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e?ective methodology for optimizing biotechnological processes.




Sommario

Optimization of Fed-batch Culture of Hybridoma Cells using Genetic Algorithms.- On-line Identification and Optimization of Feed Rate Profiles for Fed-batch Culture of Hybridoma Cells.- On-line Softsensor Development for Biomass Measurements using Dynamic Neural Networks.- Optimization of Fed-batch Fermentation Processes using Genetic Algorithms based on Cascade Dynamic Neural Network Models.- Experimental Validation of Cascade Recurrent Neural Network Models.- Designing and Implementing Optimal Control of Fed-batch Fermentation Processes.- Conclusions.










Altre Informazioni

ISBN:

9783540306344

Condizione: Nuovo
Collana: Studies in Computational Intelligence
Dimensioni: 235 x 155 mm
Formato: Copertina rigida
Illustration Notes:VIII, 123 p.
Pagine Arabe: 123
Pagine Romane: viii


Dicono di noi