libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

giusti - minimal surfaces and functions of bounded variation

Minimal Surfaces and Functions of Bounded Variation




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
183,98 €
NICEPRICE
174,78 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Birkhäuser

Pubblicazione: 01/1984
Edizione: 1984





Trama

The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis­ factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].




Sommario

I: Parametric Minimal Surfaces.- 1. Functions of Bounded Variation and Caccioppoli Sets.- 2. Traces of BV Functions.- 3. The Reduced Boundary.- 4. Regularity of the Reduced Boundary.- 5. Some Inequalities.- 6. Approximation of Minimal Sets (I).- 7. Approximation of Minimal Sets (II).- 8. Regularity of Minimal Surfaces.- 9. Minimal Cones.- 10. The First and Second Variation of the Area.- 11. The Dimension of the Singular Set.- II: Non-Parametric Minimal Surfaces.- 12. Classical Solutions of the Minimal Surface Equation.- 13. The a priori Estimate of the Gradient.- 14. Direct Methods.- 15. Boundary Regularity.- 16. A Further Extension of the Notion of Non-Parametric Minimal Surface.- 17. The Bernstein Problem.- Appendix A.- Appendix B.- Appendix C.










Altre Informazioni

ISBN:

9780817631536

Condizione: Nuovo
Collana: Monographs in Mathematics
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XII, 240 p.
Pagine Arabe: 240
Pagine Romane: xii


Dicono di noi