libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

shen dinggang (curatore); liu tianming (curatore); peters terry m. (curatore); staib lawrence h. (curatore); essert caroline (curatore); zhou sean (curatore); yap pew-thian (curatore); khan ali (curatore) - medical image computing and computer assisted intervention – miccai 2019

Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III

; ; ; ; ; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2019
Edizione: 1st ed. 2019





Trama

The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019.

The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections:

Part I: optical imaging; endoscopy; microscopy.

Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression.

Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging.

Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis.

Part V: computer assisted interventions; MIC meets CAI.

Part VI: computed tomography; X-ray imaging.





Sommario

Neuroimage Reconstruction and Synthesis.- Isotropic MRI Super-Resolution Reconstruction with Multi-Scale Gradient Field Prior.- A Two-Stage Multi-Loss Super-Resolution Network For Arterial Spin Labeling Magnetic Resonance Imaging.- Model Learning: Primal Dual Networks for Fast MR imaging.- Model-based Convolutional De-Aliasing Network Learning for Parallel MR Imaging.- Joint Reconstruction of PET + Parallel-MRI in a Bayesian Coupled-Dictionary MRF Framework.- Deep Learning Based Framework for Direct Reconstruction of PET Images.- Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction.- Reconstruction of Isotropic High-Resolution MR Image from Multiple Anisotropic Scans using Sparse Fidelity Loss and Adversarial Regularization.- Single Image Based Reconstruction of High Field-like MR Images.- Deep Neural Network for QSM Background Field Removal.- RinQ Fingerprinting: Recurrence-informed Quantile Networks for Magnetic Resonance Fingerprinting.- RCA-U-Net: Residual Channel Attention U-Net for Fast Tissue Quantification in Magnetic Resonance Fingerprinting.- GANReDL: Medical Image enhancement using a generative adversarial network with real-order derivative induced loss functions.- Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks.- Semi-Supervised VAE-GAN for Out-of-Sample Detection Applied to MRI Quality Control.- Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-Modal Neuroimages.- Predicting the Evolution of White Matter Hyperintensities in Brain MRI using Generative Adversarial Networks and Irregularity Map.- CoCa-GAN: Common-feature-learning-based Context-aware Generative Adversarial Network for Glioma Grading.- Degenerative Adversarial NeuroImage Nets: Generating Images that Mimic Disease Progression.- Neuroimage Segmentation.- Scribble-based Hierarchical Weakly Supervised Learning for Brain Tumor Segmentation.- 3D DilatedMulti-Fiber Network for Real-time Brain Tumor Segmentation in MRI.- Refined-Segmentation R-CNN: A Two-stage Convolutional Neural Network for Punctate White Matter Lesion Segmentation in Preterm Infants.- VoteNet: A Deep Learning Label Fusion Method for Multi-Atlas Segmentation.- Weakly Supervised Brain Lesion Segmentation via Attentional Representation Learning.- Scalable Neural Architecture Search for 3D Medical Image Segmentation.- Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images.- High Resolution Medical Image Segmentation using Data-swapping Method.- X-Net: Brain Stroke Lesion Segmentation Based on Depthwise Separable Convolution and Long-range Dependencies.- Multi-View Semi-supervised 3D Whole Brain Segmentation with a Self-Ensemble Network.- CLCI-Net: Cross-Level Fusion and Context Inference Networks for Lesion Segmentation of Chronic Stroke.- Brain Segmentation from k-space with End-to-end Recurrent Attention Network.- Spatial Warping Network for 3D Segmentation of the Hippocampus in MR Images.- CompareNet: Anatomical Segmentation Network with Deep Non-local Label Fusion.- A Joint 3D+2D Fully Convolutional Framework for Subcortical Segmentation.- U-ReSNet: Ultimate coupling of Registration and Segmentation with deep Nets.- Generative adversarial network for segmentation of motion affected neonatal brain MRI.- Interactive deep editing framework for medical image segmentation.- Multiple Sclerosis Lesion Segmentation with Tiramisu and 2.5D Stacked Slices.- Improving Multi-Atlas Segmentation by Convolutional Neural Network Based Patch Error Estimation.- Unsupervised deep learning for Bayesian brain MRI segmentation.- Online atlasing using an iterative centroid.- ARS-Net: Adaptively Rectified Supervision Network for Automated 3D Ultrasound Image Segmentation.- Complete Fetal Head Compounding from Multi-View 3D Ultrasound.- SegNAS3D: Network Architecture Search with Derivative-Free Global Optimization for 3D Image Segmentation.- Overfitting of neural nets under class imbalance: Analysis and improvements for segmentation.- RSANet: Recurrent Slice-wise Attention Network for Multiple Sclerosis Lesion Segmentation.- Deep Cascaded Attention Networks for Multi-task Brain Tumor Segmentation.- Partially Reversible U-Net for Memory-Efficient Volumetric Image Segmentation.- 3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation.- Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion.- Multi-task Attention-based Semi-supervised Learning for Medical Image Segmentation.- AssemblyNet: A Novel Deep Decision-Making Process for Whole Brain MRI Segmentation.- Automated Parcellation of the Cortex using Structural Connectome Harmonics.- Hierarchical parcellation of the cerebellum.- Intrinsic Patch-based Cortical Anatomical Parcellation using Graph Convolutional Neural Network on Surface Manifold.- Cortical Surface Parcellation using Spherical Convolutional Neural Networks.- A Soft STAPLE Algorithm Combined with Anatomical Knowledge.- Diffusion Weighted Magnetic Resonance Imaging.- Multi-Stage Image Quality Assessment of Diffusion MRI via Semi-Supervised Nonlocal Residual Networks.- Reconstructing High-Quality Diffusion MRI Data from Orthogonal Slice-Undersampled Data Using Graph Convolutional Neural Networks.- Surface-based Tracking of U-fibers in the Superficial White Matter.- Probing Brain Micro-Architecture by Orientation Distribution Invariant Identification of Diffusion Compartments.- Characterizing Non-Gaussian Diffusion in Heterogeneously Oriented Tissue Microenvironments.- Topographic Filtering of Tractograms as Vector Field Flows.- Enabling Multi-Shell b-Value Generalizability of Data-Driven Diffusion Models with Deep SHORE.- Super-Resolved q-Space Deep Learning.- Joint Identification of Network Hub Nodes by Multivariate Graph Inference.- Deep white matter analysis: fast, consistent tractography segmentation across populations and dMRI acquisitions.- Improved Placental Parameter Estimation Using Data-Driven Bayesian Modelling.- Optimal experimental design for biophysical modelling in multidimensional diffusion MRI.- DeepTract: A Probabilistic Deep Learning Framework for White Matter Fiber Tractography .- Fast and Scalable Optimal Transport for Brain Tractograms.- A hybrid deep learning framework for integrated segmentation and registration: evaluation on longitudinal white matter tract changes.- Constructing Consistent Longitudinal Brain Networks by Group-wise Graph Learning.- Functional Neuroimaging (fMRI).- Multi-layer temporal network analysis reveals increasing temporal reachability and spreadability in the first two years of life.- A matched filter decomposition of fMRI into resting and task components.- Identification of Abnormal Circuit Dynamics in Major Depressive Disorder via Multiscale Neural Modeling of Resting-state fMRI.- Integrating Functional and Structural Connectivitiesvia Diffusion-Convolution-Bilinear Neural Network.- Invertible Network for Classification and Biomarker Selection for ASD.- Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data.- Revealing Functional Connectivity by Learning Graph Laplacian.- Constructing Multi-Scale Connectome Atlas by Learning Common Topology of Brain Networks.- Autism Classification Using Topological Features and Deep Learning: A Cautionary Tale.- Identify Hierarchical Structures from Task-based fMRI Data via Hybrid Spatiotemporal Neural Architecture Search Net.- A Deep Learning Framework for Noise Component Detection from Resting-state Functional MRI.- A Novel Graph Wavelet Model for Brain Multi-Scale Functional-structural Feature Fusion.- Combining Multiple Behavioral Measures and Multiple Connectomes via Multiway Canonical Correlation Analysis.- Decoding brain functional connectivity implicated in AD and MCI.- Interpretable Feature Lea











Altre Informazioni

ISBN:

9783030322472

Condizione: Nuovo
Collana: Lecture Notes in Computer Science
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XXXVIII, 888 p. 359 illus., 314 illus. in color.
Pagine Arabe: 888
Pagine Romane: xxxviii


Dicono di noi