libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

capinski marek; kopp peter e. - measure, integral and probability

Measure, Integral and Probability

;




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
37,98 €
NICEPRICE
36,08 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 08/2004
Edizione: 2nd ed. 2004





Trama

Measure, Integral and Probability is a gentle introduction that makes measure and integration theory accessible to the average third-year undergraduate student. The ideas are developed at an easy pace in a form that is suitable for self-study, with an emphasis on clear explanations and concrete examples rather than abstract theory. For this second edition, the text has been thoroughly revised and expanded. New features include: · a substantial new chapter, featuring a constructive proof of the Radon-Nikodym theorem, an analysis of the structure of Lebesgue-Stieltjes measures, the Hahn-Jordan decomposition, and a brief introduction to martingales · key aspects of financial modelling, including the Black-Scholes formula, discussed briefly from a measure-theoretical perspective to help the reader understand the underlying mathematical framework. In addition, further exercises and examples are provided to encourage the reader to become directly involved with the material.




Sommario

Content.- 1. Motivation and preliminaries.- 1.1 Notation and basic set theory.- 1.2 The Riemann integral: scope and limitations.- 1.3 Choosing numbers at random.- 2. Measure.- 2.1 Null sets.- 2.2 Outer measure.- 2.3 Lebesgue-measurable sets and Lebesgue measure.- 2.4 Basic properties of Lebesgue measure.- 2.5 Borel sets.- 2.6 Probability.- 2.7 Proofs of propositions.- 3. Measurable functions.- 3.1 The extended real line.- 3.2 Lebesgue-measurable functions.- 3.3 Examples.- 3.4 Properties.- 3.5 Probability.- 3.6 Proofs of propositions.- 4. Integral.- 4.1 Definition of the integral.- 4.2 Monotone convergence theorems.- 4.3 Integrable functions.- 4.4 The dominated convergence theorem.- 4.5 Relation to the Riemann integral.- 4.6 Approximation of measurable functions.- 4.7 Probability.- 4.8 Proofs of propositions.- 5. Spaces of integrable functions.- 5.1 The space L1.- 5.2 The Hilbert space L2.- 5.3 The LP spaces: completeness.- 5.4 Probability.- 5.5 Proofs of propositions.- 6. Product measures.- 6.1 Multi-dimensional Lebesgue measure.- 6.2 Product ?-fields.- 6.3 Construction of the product measure.- 6.4 Fubini’s theorem.- 6.5 Probability.- 6.6 Proofs of propositions.- 7. The Radon—Nikodym theorem.- 7.1 Densities and conditioning.- 7.2 The Radon—Nikodym theorem.- 7.3 Lebesgue—Stieltjes measures.- 7.4 Probability.- 7.5 Proofs of propositions.- 8. LimitL theorems.- 8.1 Modes of convergence.- 8.2 Probability.- 8.3 Proofs of propositions.- Solutions.- References.










Altre Informazioni

ISBN:

9781852337810

Condizione: Nuovo
Collana: Springer Undergraduate Mathematics Series
Dimensioni: 254 x 178 mm
Formato: Brossura
Illustration Notes:XV, 311 p. 3 illus.
Pagine Arabe: 311
Pagine Romane: xv


Dicono di noi