libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro
ARGOMENTO:  BOOKS > INFORMATICA > TESTI GENERALI

guo song; zhou qihua - machine learning on commodity tiny devices

Machine Learning on Commodity Tiny Devices Theory and Practice

;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
90,98 €
NICEPRICE
86,43 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

CRC Press

Pubblicazione: 12/2022
Edizione: 1° edizione





Note Editore

This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. This book presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization and hardware-level instruction acceleration. Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discussion of the latest research progress and provides system-level insights on designing TinyML frameworks, including neural network design, training algorithm optimization and domain-specific hardware acceleration. It identifies the main challenges when deploying TinyML tasks in the real world and guides the researchers to deploy a reliable learning system. This book will be of interest to students and scholars in the field of edge intelligence, especially to those with sufficient professional Edge AI skills. It will also be an excellent guide for researchers to implement high-performance TinyML systems.




Sommario

1. Introduction 2. Fundamentals: On-device Learning Paradigm 3. Preliminary: Theories and Algorithms 4. Model-level Design: Computation Acceleration and Communication Saving 5. Hardware-level Design: Neural Engines and Tensor Accelerators 6. Infrastructure-level Design: Serverless and Decentralized Machine Learning 7. System-level Design: from Standalone to Clusters 8. Application: Image-based Visual Perception 9. Application: Video-based Real-time Processing 10. Application: Privacy, Security, Robustness and Trustworthiness in Edge AI




Autore

Song Guo is a Full Professor leading the Edge Intelligence Lab and Research Group of Networking and Mobile Computing at the Hong Kong Polytechnic University. Professor Guo is a Fellow of the Canadian Academy of Engineering, Fellow of the IEEE, Fellow of the AAIA and Clarivate Highly Cited Researcher. Qihua Zhou is a PhD student with the Department of Computing at the Hong Kong Polytechnic University. His research interests include distributed AI systems, large-scale parallel processing, TinyML systems and domain-specific accelerators.










Altre Informazioni

ISBN:

9781032374239

Condizione: Nuovo
Dimensioni: 10 x 7 in Ø 1.15 lb
Formato: Copertina rigida
Illustration Notes:56 b/w images, 7 tables, 20 halftones and 36 line drawings
Pagine Arabe: 250
Pagine Romane: xviii


Dicono di noi