libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

haq nandinee (curatore); johnson patricia (curatore); maier andreas (curatore); qin chen (curatore); würfl tobias (curatore); yoo jaejun (curatore) - machine learning for medical image reconstruction

Machine Learning for Medical Image Reconstruction 5th International Workshop, MLMIR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings

; ; ; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
59,98 €
NICEPRICE
56,98 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 09/2022
Edizione: 1st ed. 2022





Trama

This book constitutes the refereed proceedings of the 5th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2022, held in conjunction with MICCAI 2022, in September 2022, held in Singapore.

The 15 papers presented were carefully reviewed and selected from 19 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.





Sommario

Deep Learning for Magnetic Resonance Imaging.- Rethinking the optimization process for self-supervised model-driven MRI reconstruction.- NPB-REC: Non-parametric Assessment of Uncertainty in Deep-learning-based MRI Reconstruction from Undersampled Data.- Adversarial Robustness of MR Image Reconstruction under Realistic Perturbations.- High-Fidelity MRI Reconstruction with the Densely Connected Network Cascade and Feature Residual Data Consistency Priors.- Metal artifact correction MRI using multi-contrast deep neural networks for diagnosis of degenerative spinal diseases.- Segmentation-Aware MRI Reconstruction.- MRI Reconstruction with Conditional Adversarial Transformers.- Deep Learning for General Image Reconstruction- A Noise-level-aware Framework for PET Image Denoising.- DuDoTrans: Dual-Domain Transformer for Sparse-View CT Reconstruction.- Ce Wang, Kun Shang, Haimiao Zhang, Qian Li, and S. Kevin Zhou Deep Denoising Network for X-Ray Fluoroscopic Image Sequences of Moving Objects.- PP-MPI: A Deep Plug-and-Play Prior for Magnetic Particle Imaging Reconstruction.- Learning while Acquisition: Towards Active Learning Framework for Beamforming in Ultrasound Imaging.- DPDudoNet: Deep-Prior based Dual-domain Network for Low-dose Computed Tomography Reconstruction.- MTD-GAN: Multi-Task Discriminator based Generative Adversarial Networks for Low-Dose CT Denoising.- Uncertainty-Informed Bayesian PET Image Reconstruction using a Deep Image Prior.










Altre Informazioni

ISBN:

9783031172465

Condizione: Nuovo
Collana: Lecture Notes in Computer Science
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:VIII, 157 p. 83 illus., 54 illus. in color.
Pagine Arabe: 157
Pagine Romane: viii


Dicono di noi