libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

bennaceur amel (curatore); hähnle reiner (curatore); meinke karl (curatore) - machine learning for dynamic software analysis: potentials and limits

Machine Learning for Dynamic Software Analysis: Potentials and Limits International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers

; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
62,98 €
NICEPRICE
59,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 07/2018
Edizione: 1st ed. 2018





Trama

Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities.  Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems.  These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts.  This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits” held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities.  The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches.






Sommario

Introduction.- Testing and Learning.- Extensions of Automata Learning.- Integrative Approaches.











Altre Informazioni

ISBN:

9783319965611

Condizione: Nuovo
Collana: Lecture Notes in Computer Science
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:IX, 257 p. 38 illus.
Pagine Arabe: 257
Pagine Romane: ix


Dicono di noi