libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

amini massih-reza (curatore); canu stéphane (curatore); fischer asja (curatore); guns tias (curatore); kralj novak petra (curatore); tsoumakas grigorios (curatore) - machine learning and knowledge discovery in databases

Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part III

; ; ; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
140,98 €
NICEPRICE
133,93 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 03/2023
Edizione: 1st ed. 2023





Trama

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022.

The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions.

The volumes are organized in topical sections as follows:

Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning;

Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems;

Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search;

Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; .

Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability;

Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.





Sommario

Deep learning.- robust and adversarial machine learning.- generative models.- computer vision.- meta-learning, neural architecture search.










Altre Informazioni

ISBN:

9783031264085

Condizione: Nuovo
Collana: Lecture Notes in Computer Science
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XLVI, 683 p. 204 illus., 194 illus. in color.
Pagine Arabe: 683
Pagine Romane: xlvi


Dicono di noi