Inhalt: Normalformen: Überblick über die Klassifikation - Die Klassifikation nilpotenter Endomorphismen - Eigenwerte, Eigenräume, Jordan-Zerlegung - Die Jordan-Normalform - Elementarteiler - Die Klassifikation bis auf Konjugation - 1. Beispiel: GL (2,IR) - 2. Beispiel: GL (3,IR) - Anhang: Die schwingende Saite - Historische Bemerkungen zur Untersuchung der Struktur linearer Transformationen/ Vektorräume mit Hermiteschen Formen und ihre Endomorphismen: Sesquilinearformen - Selbstadjungierte und unitäre Endomorphismen- Orthogonalisierung - Isotropie - Klassifikation hermitescher und antihermitescher Formen - Euklidische und unitäre Vektorräume - Die Klassischen Gruppen - Bemerkungen zur Geschichte der Geometrie der klassischen Gruppen.