libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

efron bradley - large-scale inference
Zoom

Large-Scale Inference Empirical Bayes Methods for Estimation, Testing, and Prediction




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
55,98 €
NICEPRICE
53,18 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 11/2012





Note Editore

We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.




Sommario

Introduction and foreword; 1. Empirical Bayes and the James–Stein estimator; 2. Large-scale hypothesis testing; 3. Significance testing algorithms; 4. False discovery rate control; 5. Local false discovery rates; 6. Theoretical, permutation and empirical null distributions; 7. Estimation accuracy; 8. Correlation questions; 9. Sets of cases (enrichment); 10. Combination, relevance, and comparability; 11. Prediction and effect size estimation; A. Exponential families; B. Programs and data sets; Bibliography; Index.




Prefazione

Modern scientific technology (e.g. microarrays, fMRI machines) produces data in vast quantities. Bradley Efron explains the empirical Bayes methods that help make sense of a new statistical world. This is essential reading for professional statisticians and graduate students wishing to use and understand important new techniques like false discovery rates.




Autore

Bradley Efron is Max H. Stein Professor of Statistics and Biostatistics at the Stanford University School of Humanities and Sciences, and the Department of Health Research and Policy with the School of Medicine.










Altre Informazioni

ISBN:

9781107619678

Condizione: Nuovo
Collana: Institute of Mathematical Statistics Monographs
Dimensioni: 224 x 15 x 150 mm Ø 450 gr
Formato: Brossura
Illustration Notes:65 b/w illus. 10 colour illus. 105 exercises
Pagine Arabe: 276


Dicono di noi