libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

jujjavarapu satya eswari (curatore); poluri krishna mohan (curatore) - green polymeric nanocomposites

Green Polymeric Nanocomposites

;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
182,98 €
NICEPRICE
173,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

CRC Press

Pubblicazione: 02/2020
Edizione: 1° edizione





Note Editore

Covering fundamentals through applications, this book discusses environmentally friendly polymer nanocomposites and alternatives to traditional nanocomposites through detailed reviews of a variety of materials procured from different resources, their synthesis, and applications using alternative green approaches. The text: Describes green polymeric nanocomposites that show greater properties in terms of degradability, biocompatibility, synthesis process, cost effectiveness, mechanical strength, high surface area, nontoxicity, and environmental friendliness Explains the basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry Discusses practical applications that present future directions in the biomedical, pharmaceutical, and automotive industries This book is aimed at scientists, researchers, and academics working in nanotechnology, biomaterials, polymer science, and those studying products derived from eco-friendly nanomaterials.




Sommario

Chapter 1: Introduction about green molecules and present scenario and previous research on green polymer nanocomposites Neelamshobha Nirala1* Importance of green molecules …………………………………………………………..xx Importance of green nanoparticles…………………………………………….………..xx Importance of natural polymer…………………………………………………………..xx Importance of nanocomposites……………………………….…………………………..xx Types of natural polymers with properties……………………………………………..xx Why we combine natural polymers with green nanoparticles………………….……..xx Present scenario and previous research on green polymer nanocomposites…………..xx Comparative study of their synthesis process………………………..………………..xx 1.8.1 In-situ polymerization………………………….………………………..xx 1.8.2 Melt intercalation………………………………………………………..xx 1.8.3 Exfoliation adsorption……………………….…………………………..xx 1.9. Comparative study of their properties………………………………………………..xx 1.10. Comparative study of their quality of assessment…………………………………..xx 1.10.1 Infrared Spectroscopy………………………………………………..xx 1.10.2 X-ray diffraction……………………………………………………..xx 1.10.3 Wide Angle X-ray diffraction………………………………………..xx 1.10.4 Fourier-transform infrared…………………………………………..xx 1.10.5 Scanning Electron Microscope……………………..………………..xx 1.10.6 Transmission Electron Microscope………………….……….……..xx 1.10.7 Zeta Potential……………………………...………………………..xx 1.10.8 Differential thermal analysis………………………………………..xx 1.10.9 Thermo Gravimetric Analysis…………………………….………..xx 1.11. Comparative study of their drawbacks………………………………….………..xx 1.12. Conclusion……………………………………………..………………….………..xx Chapter 2: Synthesis of Green Polymeric Nanocomposites using Electrospinning Sweta Naik, K. Chandrasekhar and J. Satya Eswari* Introduction…………………………………………………………………………............xx Principle of Electro-spinning………………………………………………………………xx Effect of Process Parameters on Electrospun Nanofibers……………….xx Solution Properties Parameters………………………………………….xx Viscosity ………………………………………………………………...xx Concentration of the Solution…………………………………………...xx Molecular Weight – MW………………………………………………..xx Surface Tension –ST……………………………………………………xx Solution Conductivity…………………………………………………..xx Voltage Applied………………………………………………………....xx Feed Rate………………………………………………………………..xx Fabrication Electro spun Nano-composites………………………………………………xx Poly ethylene oxide - PEO, poly-L-lactide-PLLA based formed oleic acid-coated magnetite nano-composites by electro-spinning……………….xx Gelatin based Silver Na- nano-composites by electro-spinning………..xx Chitosan Nanoparticles Self-Assembled from Electro spun Composite Nano-fibers……………………………………………………………xx Preparation of Electrospun Poly Vinyl Pyrrolidone/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers…………………..xx Starch-based composite scaffolds by electro-spinning……………….xx Characterization of Electro spun Nano-composites…………………………………..xx Morphological characteristics………………………………………..xx Structural, compositional and physicochemical properties…………..xx Mechanical strength………………………………………………….xx Modelling and simulation................................................................................................xx Modelling of the ES process…………………………………………xx Jet initiation…………………………………………………………..xx Jet thinning-JT………………………………………………………..xx Jet solidification………………………………………………………..xx Applications of Electro spun Nanocomposites…………………………………………..xx Wound dressing……………………………………………………...…xx Food Packing……...……………………………………………………xx Water and air filters……………………………………………….……xx Super-capacitor and battery…………………………………………….xx Tissue template…………………………………………………………xx Drug delivery and pharmaceutical composition………………………..xx Cosmetics……………………………………………………………….xx Fuel cell…………………………………………………………………xx 2.7 Conclusion and Future Trends…………………………………………………………...xx 2.8 References.............................................................................................................................xx Chapter3: Synthesis and Characterization of Nanocomposites from Animal Origin polymer with green nanoparticles Sweta Naik, Anita Tirkey, Dr. J. Satya Eswari* Introduction………………………………………………………………………………..xx Eco-friendly Bio fabrication of Polymeric Nanocomposite……………………………..xx Collagen /Gelatine based Nanocomposites…………………………………..xx Silk fibroin based Nanocomposites……………………………..……………xx Alginate based Nanocomposites……………...………………………………xx Chitosan-based Nanocomposites……………………………………………..xx Albumin based Nanocomposites…………………………………………...…xx Hyaluronic acid-based composites……………………………………………xx Optimization of the Various Physicochemical Parameters………………………………xx Size and Surface Area of the nanocomposites………………………………..xx Effect of Particle Shape and Aspect Ratio……………………………………xx Effect of Aggregation and Concentration…………………………………….xx Effect of Surface Charge……………………………………………………..xx Effect of Surface Coating and Surface Roughness…………………………..xx Effect of Solvents/Medium…………………………………………………..xx Physical Characterizations………………………………………………………………..xx Nanocomposites, their Uses, and Applications…………………………………………..xx Food and Beverage Packaging………………………………………………..xx Tissue engineering…………………………………………………………….xx Drug delivery system………………………………………………………….xx Environmental protection and wastewater treatment…………………………xx Application in Cosmetics…………………………………….………….……xx Making lightweight sensors with nanocomposites……………………………xx Making flexible batteries by using nano-composites…………………………xx Making tumors more visible and easy to remove…………………………….xx Conclusion and Future Perspectives……………………………………………………....xx References…………………………………………………………………………………...xx Chapter 4: Sources of natural polymers from plants with green nanoparticles J.Satya Eswari, K. Chandrasekhar, Sweta Naik, NK Prasanna Kumari, Aditya L Toppo and Dr. Veena Thakur* Introduction……………………………………………………………………………...…xx Natural Polymers…………………………………………………………………………..xx Agar and its composites…………………………………………………………xx Natural rubber…………………………………………………………………...xx Pectin and its composites………………………………………………………..xx Starch……………………………………………………………………………xx Cellulose and its composites……………………………………………………xx Carbohydrates and their composites…………………………………………....xx Conclusion…………………………………………………………………………………xx References…………………………………………………………………………………xx Chapter 5: Source of natural polymers from microorganisms with green nanoparticles K. Chandrasekhar*, J. Satya Eswari, Prasun Kumar, Gopalakrishnan Kumar, Potla Durthi Chandrasai, Enamala Manoj Kumar, Murthy Chavali 5.1 Source of natural polymers from microbes with green nanoparticles …….………………. xx 5.2 Dextran and their composites ……………………………………………………………... xx 5.2.1 Dextran blend with sulfate coated chitosan ………………………………….…….. xx 5.2.2 Dextran mixture using curcumin ………………….……………………………….. xx 5.3 Xanthan and their composites ……………………………………………………………. xx 5.3.1 Xanthan gum mixture using poly(acrylamide) …………….………………………. xx 5.3.2 Xanthan mixture using polypyrrole ………………………………………………... xx 5.3.3 Xanthan gum mixture using polyaniline ………………….……………………….. xx 5.4 Bacterial Alginate and their composites …………….……………………………………. xx 5.5 Bacterial cellulose and their composites ……………………….…………………………. xx 5.5.1 Scaffold ……………………………………………………………………………. xx 5.5.2 Cornea …………………………..………………………………………………….. xx 5.5.3 Heart valves ……………………………..…………………………………………. xx 5.5.4 Blood vessels …………………………………….………………………………… xx 5.5.5 Bone and cartilage ………………………………………………………………….. xx 5.6 Microbial Hyaluronic Acid and their composites …………………...……………………. xx 5.6.1 Hyaluronic acid grafted using polyacrylic acid ………………….………………… xx 5.6.2 Hyaluronic blend acid using polypyrrole ……………………………………....…... xx 5.6.3 Hyaluronic acid mixture using poly(ethylene glycol) ……………………………… xx 5.6.4 Hyaluronic acid mixture by poly(Ne-acryloyl l-lysine) ……………………………. xx 5.6.5 Hyaluronic acid mixture using poly(Lactide-Co-Glycolide) ………………….…… xx 5.7 Polyhydroxyalkanoates and their composites ……………………………………………. xx 5.8 Pullulan ………………………………………………………………………………...… xx 5.9 Conclusion …………………………………………………………………………….… xx Chapter 6: Enhancement of Polymeric Materi




Autore

Dr. Satya Eswari Jujjavarapu is currently working as an Assistant Professor in the Department of Biotechnology at National Institute of Technology (NIT), Raipur, India. Her fields of specialization include bioinformatics, biotechnology, and process modeling, evolutionary optimization, and artificial intelligence. She has more than 35 publications in SCI/Scopus-indexed journals and 35 proceedings in international and national conferences. Her research contributions have received wide global citations. She has also published six book chapters and four books (currently in press) with international publishers. She is an active member of various organizations and has received various awards. Dr. Krishna Mohan Poluri is currently working as an Associate Professor in the Biotechnology Department, IIT-Roorkee. He earned his PhD from Tata Institute of Fundamental Research TIFR–Mumbai, and Post-doc from Rutgers University and University of Texas Medical Branch (UTMB–Texas). His areas of expertise are structural biology, protein engineering, biomolecular interactions, glycoimmunology and structure-based design of therapeutics and scaffolds, bionanotechnology and algal biotechnology, etc. He has published 85 publications, including research articles, editorials, books, and book chapters in various reputed international journals. He has authored the book Protein Engineering Techniques. Dr. Poluri is also a guest editor/editorial board member and ad hoc reviewer for several international research journals. He has won several awards and fellowships for his research work, most prominently the Young Scientist Award from the Indian Science Congress Association (ISCA), 2009, National Academy of Sciences India (NASI), 2014, and Innovative Young Biotechnologist Award (IYBA), 2013, by DBT.










Altre Informazioni

ISBN:

9781138486577

Condizione: Nuovo
Dimensioni: 9.25 x 6.25 in Ø 1.38 lb
Formato: Copertina rigida
Illustration Notes:59 b/w images and 18 tables
Pagine Arabe: 324
Pagine Romane: xvi


Dicono di noi