libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

zhang daoqiang (curatore); zhou luping (curatore); jie biao (curatore); liu mingxia (curatore) - graph learning in medical imaging

Graph Learning in Medical Imaging First International Workshop, GLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings

; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
54,98 €
NICEPRICE
52,23 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 11/2019
Edizione: 1st ed. 2019





Trama

This book constitutes the refereed proceedings of the First International Workshop on Graph Learning in Medical Imaging, GLMI 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019.

The 21 full papers presented were carefully reviewed and selected from 42 submissions. The papers focus on major trends and challenges of graph learning in medical imaging and present original work aimed to identify new cutting-edge techniques and their applications in medical imaging.




Sommario

Graph Hyperalignment for Multi-Subject fMRI Functional Alignment.- Interactive 3D Segmentation Editing and Refinement via Gated Graph Neural Networks.- Adaptive Thresholding of Functional Connectivity Networks for fMRI-based Brain Disease Analysis.- Graph-kernel-based Multi-task Structured Feature Selection on Multi-level Functional Connectivity Networks for Brain Disease Classification.- Linking convolutional neural networks with graph convolutional networks: application in pulmonary artery-vein separation.- Comparative Analysis of Magnetic Resonance Fingerprinting Dictionaries via Dimensionality Reduction.- Learning Deformable Point Set Registration with Regularized Dynamic Graph CNNs for Large Lung Motion in COPD Patients.- Graph Convolutional Networks for Coronary Artery Segmentation in Cardiac CT Angiography.- Triplet Graph Convolutional Network forMulti-scale Analysis of Functional Connectivityusing Functional MRI.- Multi-Scale Graph Convolutional Network for Mild Cognitive Impairment Detection.- DeepBundle: Fiber Bundle Parcellation With Graph CNNs.- Identification of Functional Connectivity Features in Depression Subtypes Using a Data-Driven Approach.- Movie-watching fMRI Reveals Inter-subject Synchrony Alteration in Functional Brain Activity in ADHD.- Weakly- and Semi- Supervised Graph CNN for identifying Basal Cell Carcinoma on Pathological images.- Geometric Brain Surface Network For Brain Cortical Parcellation.- Automatic Detection of Craniomaxillofacial Anatomical Landmarks on CBCT Images using 3D Mask R-CNN.- Discriminative-Region-Aware Residual Network for Adolescent Brain Structure and Cognitive Development Analysis.- Graph Modeling for Identifying Breast Tumor Located in Dense Background of a Mammogram.- OCD Diagnosis via Smoothing Sparse Network and Stacked Sparse Auto-Encoder Learning.- A Longitudinal MRI Study of Amygdala and Hippocampal Subfields for Infants with Risk of Autism.- CNS: CycleGAN-assisted Neonatal Segmentation Model for Cross-Datasets.











Altre Informazioni

ISBN:

9783030358167

Condizione: Nuovo
Collana: Lecture Notes in Computer Science
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:IX, 182 p. 87 illus., 68 illus. in color.
Pagine Arabe: 182
Pagine Romane: ix


Dicono di noi