libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

stasinopoulos mikis d.; rigby robert a.; heller gillian z.; voudouris vlasios; de bastiani fernanda - flexible regression and smoothing

Flexible Regression and Smoothing Using GAMLSS in R

; ; ; ;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
61,98 €
NICEPRICE
58,88 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 09/2020
Edizione: 1° edizione





Note Editore

This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent.In particular, the GAMLSS statistical framework enables flexible regression and smoothing models to be fitted to the data. The GAMLSS model assumes that the response variable has any parametric (continuous, discrete or mixed) distribution which might be heavy- or light-tailed, and positively or negatively skewed. In addition, all the parameters of the distribution (location, scale, shape) can be modelled as linear or smooth functions of explanatory variables. Key Features:Provides a broad overview of flexible regression and smoothing techniques to learn from data whilst also focusing on the practical application of methodology using GAMLSS software in R. Includes a comprehensive collection of real data examples, which reflect the range of problems addressed by GAMLSS models and provide a practical illustration of the process of using flexible GAMLSS models for statistical learning.R code integrated into the text for ease of understanding and replication.Supplemented by a website with code, data and extra materials.This book aims to help readers understand how to learn from data encountered in many fields. It will be useful for practitioners and researchers who wish to understand and use the GAMLSS models to learn from data and also for students who wish to learn GAMLSS through practical examples.




Sommario

Part I Introduction to models and packagesWhy GAMLSS?Introduction to the gamlss packagesPart II The R implementation: algorithms and functionsThe AlgorithmsThe gamlss() functionMethods for fitted gamlss objectsPart III DistributionsThe gamlss.family of distributionsFinite mixture distributionsPart IV Additive termsLinear parametric additive termsAdditive Smoothing TermsRandom effectsPart V Model selection and diagnosticsModel selection techniquesDiagnosticsPart VI ApplicationsCentile EstimationFurther Applications




Autore

Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Vlasios Voudouris, Fernanda De Bastiani










Altre Informazioni

ISBN:

9780367658069

Condizione: Nuovo
Dimensioni: 10 x 7 in Ø 2.34 lb
Formato: Brossura
Pagine Arabe: 572


Dicono di noi