Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
Dieses Buch beschreibt die stochastische und prädiktive Kontrollmodellierung elektrischer Systeme, die die Herausforderung der Vorhersage des Energiebedarfs unter volatilen Bedingungen bewältigen kann.
Es wird erwartet, dass das globale Stromnetz mit bedeutenden Energie- und Umweltherausforderungen konfrontiert wird, wie z. B. Treibhausgasemissionen und steigender Energieverbrauch aufgrund der Elektrifizierung von Heizung und Verkehr. Heute umfasst das Verteilungsnetz Energiequellen mit unbeständigem Nachfrageverhalten und intermittierender erneuerbarer Erzeugung. Daher wird es immer wichtiger, das Nachfrageverhalten im Niederspannungsbereich und die Anforderungen an optimale Energiemanagementsysteme zu verstehen, um Energieeinsparungen zu erzielen, Lastspitzen zu reduzieren und Gasemissionen zu verringern.
Elektrische Lastprognosen sind ein wichtiges Instrument, um das hochgradig stochastische Verhalten der Stromnachfrage zu verstehen und zu antizipieren und um optimaleEnergiemanagementsysteme zu entwickeln. Lastprognosen, insbesondere probabilistische Prognosen, können fundiertere Planungs- und Managemententscheidungen unterstützen, was für künftige kohlenstoffarme Verteilungsnetze von entscheidender Bedeutung sein wird. Bei Speichervorrichtungen können Prognosen den geeigneten Kontrollzustand der Batterie optimieren. Es gibt nur wenige Bücher über Lastprognosen für Niederspannungsnetze und noch weniger Beispiele dafür, wie solche Prognosen in die Steuerung von Speichern integriert werden können.
Dieses Buch stellt Material zu Lastprognosen, Regelungsalgorithmen und Energieeinsparungen vor und bietet praktische Anleitungen für Praktiker anhand von zwei Beispielen aus dem wirklichen Leben: Wohnnetze und Kräne in einem Hafenterminal.
Einführung.- Grundlegende Instrumente.- Kurzfristige Lastprognosen.- Steuerungsstrategien in Niederspannungsnetzen zur Energieeinsparung.- Optimale Steuerung mit Lastprognosen.- Fallbeispiel: Energieeinsparung durch optimale Steuerung und Lastprognosen.- Schlussfolgerung.
Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.