libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

olson david l. - descriptive data mining

Descriptive Data Mining




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
118,98 €
NICEPRICE
113,03 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 07/2018
Edizione: Softcover reprint of the original 1st ed. 2017





Trama

This book offers an overview of knowledge management. It starts with an introduction to the subject, placing descriptive models in the context of the overall field as well as within the more specific field of data mining analysis. Chapter 2 covers data visualization, including directions for accessing R open source software (described through Rattle). Both R and Rattle are free to students. Chapter 3 then describes market basket analysis, comparing it with more advanced models, and addresses the concept of lift. Subsequently, Chapter 4 describes smarketing RFM models and compares it with more advanced predictive models. Next, Chapter 5 describes association rules, including the APriori algorithm and provides software support from R. Chapter 6 covers cluster analysis, including software support from R (Rattle), KNIME, and WEKA, all of which are open source. Chapter 7 goes on to describe link analysis, social network metrics, and open source NodeXL software, and demonstrates link analysis application using PolyAnalyst output. Chapter 8 concludes the monograph.

Using business-related data to demonstrate models, this descriptive book explains how methods work with some citations, but without detailed references. The data sets and software selected are widely available and can easily be accessed.





Sommario

Chapter 1 Knowledge Management.- Chapter 2: Data Visualization.- Chapter 3 Market Basket Analysis.- Chapter 4 Recency Frequency and Monetary Model.- Chapter 5 Association Rules.- Chapter 6 Cluster Analysis.- Chapter 7 Link Analysis.- Chapter 7 Link Analysis.- Chapter 8 Descriptive Data Mining.- References.- Index.




Autore

David L. Olson is the James & H.K. Stuart Professor in MIS and Chancellor’s Professor at the University of Nebraska. He has published over 200 articles in refereed journals, primarily on the topic of multiple objective decision-making and information technology. He has authored over 20 books, is co-editor-in-chief of the International Journal of Services Sciences and associate editor of a number of journals. He has given over 150 presentations at international and national conferences. He is a member of the Decision Sciences Institute, the Institute for Operations Research and Management Sciences, and the Multiple Criteria Decision Making Society. He was a Lowry Mays endowed Professor at Texas A&M University from 1999 to 2001, was named the Raymond E. Miles Distinguished Scholar in 2002, and was James C. and Rhonda Seacrest Fellow from 2005 to 2006. He was named Best Enterprise Information Systems Educator by IFIP in 2006. He is a Fellow of the Decision Sciences Institute.










Altre Informazioni

ISBN:

9789811098475

Condizione: Nuovo
Collana: Computational Risk Management
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XI, 116 p. 63 illus., 60 illus. in color.
Pagine Arabe: 116
Pagine Romane: xi


Dicono di noi