libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

arzarello ferdinando; dané cristiano; lovera laura; mosca miranda; nolli nicoletta; ronco antonella - dalla geometria di euclide alla geometria dell'universo

Dalla geometria di Euclide alla geometria dell'Universo Geometria su sfera, cilindro, cono, pseudosfera

; ; ; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
64,98 €
NICEPRICE
61,73 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Italiano
Editore:

Springer

Pubblicazione: 09/2012
Edizione: 2012





Trama

Il testo confronta con la usuale geometria del piano (euclidea) vari tipi di geometrie che si hanno su superfici note e meno note: geometria sulla sfera, sul cilindro, sul cono e sulla pseudosfera. L'idea di fondo è di giungere alla descrizione "intrinseca" di queste geometrie analizzando che cosa significa l'andare diritto su queste superficie (cioè l'idea di geodetica). Si giunge così a vari tipi di geometrie che si discostano da quella euclidea usuale: geometrie localmente euclidee (su cilindro e cono deprivato del vertice), geometria ellittica (sulla sfera), geometria iperbolica (sulla pseudosfera). Si scopre che la chiave di volta concettuale che distingue queste diverse geometrie è la nozione di curvatura gaussiana, rispettivamente nulla su piani, cilindri, coni; (costante) positiva sulla sfera e (costante) negativa sulla pseudosfera. In relazione a queste idee matematiche si sviluppano anche vari temi interdisciplinari: si studiano ad esempio le caratteristiche delle carte geografiche che rappresentano la Terra a partire dal problema di determinare la rotta migliore tra due località (porti, aereoporti); si indaga sulla curvatura del nostro universo; si descrivono le leggi geometriche su cui si basa la tecnologia dei GPS. Non si trascurano gli aspetti fondazionali, analizzando quali assiomi della Geometria Euclidea valgano o meno e perché nelle nuove geometrie.




Sommario

1 Perché la geometria sulle superfici.- 2 La geometria sulla sfera.- 3 Euclide, Hilbert e la geometria sulla sfera.- 4 Geometria sul cilindro.- 5 Geometria sul cono.- 6 La curvatura.- 7. La pseudosfera e la geometria sulla pseudosfera.- 8 La sfera Terra: fare il punto.- 9 La sfera Terra: le carte geografiche.- 10 Le mappe conformi della pseudosfera e i modelli di geometria iperbolica.- 11 Il nostro spazio è euclideo?.- A Confronto tra i sistemi assiomatici di Euclide e di Hilbert.- B GPS: sistema di posizionamento globale.- Bibliografia.










Altre Informazioni

ISBN:

9788847025738

Condizione: Nuovo
Collana: Convergenze
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XI, 198 pagg.
Pagine Arabe: 198
Pagine Romane: xi


Dicono di noi