Many problems of the engineering sciences, physics, and mathematics lead to con volution equations and their various modifications. Convolution equations on a half-line can be studied by having recourse to the methods and results of the theory of Toeplitz and Wiener-Hopf operators. Convolutions by integrable kernels have continuous symbols and the Cauchy singular integral operator is the most prominent example of a convolution operator with a piecewise continuous symbol. The Fredholm theory of Toeplitz and Wiener-Hopf operators with continuous and piecewise continuous (matrix) symbols is well presented in a series of classical and recent monographs. Symbols beyond piecewise continuous symbols have discontinuities of oscillating type. Such symbols emerge very naturally. For example, difference operators are nothing but convolution operators with almost periodic symbols: the operator defined by (A
Sommario
1 Convolution Operators and Their Symbols.- 2 Introduction to Scalar Wiener-Hopf Operators.- 3 Scalar Wiener-Hopf Operators with SAP Symbols.- 4 Some Phenomena Caused by SAP Symbols.- 5 Introduction to Matrix Wiener-Hopf Operators.- 6 Factorization of Matrix Functions.- 7 Bohr Compactification.- 8 Existence and Uniqueness ofAPFactorization.- 9 Matrix Wiener-Hopf Operators withAPWSymbols.- 10 Matrix Wiener-Hopf Operators withSAPWSymbols.- 11 Left Versus Right Wiener-Hopf Factorization.- 12 Corona Theorems.- 13 The Portuguese Transformation.- 14 Some Concrete Factorizations.- 15 Scalar Trinomials.- 16 Toeplitz Operators.- 17 Zero-Order Pseudodifferential Operators.- 18 Toeplitz Operators with SAP Symbols on Hardy Spaces.- 19 Wiener-Hopf Operators with SAP Symbols on Lebesgue Spaces.- 20 Hankel Operators on Besicovitch Spaces.- 21 Generalized AP Factorization.- 22 Canonical Wiener-Hopf Factorization via Corona Problems.- 23 Canonical APW Factorization via Corona Problems.
Altre Informazioni
ISBN:
9783764366728
Condizione: Nuovo
Collana: Operator Theory: Advances and Applications
Dimensioni: 235 x 155 mm
Formato: Copertina rigida
Illustration Notes:XI, 462 p.
Pagine Arabe: 462
Pagine Romane: xi
Dicono di noi
Per noi la tua privacy è importante
Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.