libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

chang lijun; qin lu - cohesive subgraph computation over large sparse graphs

Cohesive Subgraph Computation over Large Sparse Graphs Algorithms, Data Structures, and Programming Techniques

;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
54,98 €
NICEPRICE
52,23 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 01/2019
Edizione: 1st ed. 2018





Trama

This book is considered the first extended survey on algorithms and techniques for efficient cohesive subgraph computation. With rapid development of information technology, huge volumes of graph data are accumulated. An availability of rich graph data not only brings great opportunities for realizing big values of data to serve key applications, but also brings great challenges in computation. Using a consistent terminology, the book gives an excellent introduction to the models and algorithms for the problem of cohesive subgraph computation. The materials of this book are well organized from introductory content to more advanced topics while also providing well-designed source codes for most algorithms described in the book.
 
This is a timely book for researchers who are interested in this topic and efficient data structure design for large sparse graph processing. It is also a guideline book for new researchers to get to know the area of cohesive subgraph computation.





Sommario

Introduction.- Linear Heap Data Structures.- Minimum Degree-based Core Decomposition.- Average Degree-based Densest Subgraph Computation.- Higher-order Structure-based Graph Decomposition.- Edge Connectivity-based Graph Decomposition.










Altre Informazioni

ISBN:

9783030035983

Condizione: Nuovo
Collana: Springer Series in the Data Sciences
Dimensioni: 235 x 155 mm
Formato: Copertina rigida
Illustration Notes:XII, 107 p. 21 illus., 1 illus. in color.
Pagine Arabe: 107
Pagine Romane: xii


Dicono di noi