libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro
ARGOMENTO:  BOOKS > INFORMATICA > TESTI GENERALI

hima bindu k.; morusupalli raghava; dey nilanjan; rao c. raghavendra - coefficient of variation and machine learning applications

Coefficient of Variation and Machine Learning Applications

; ; ;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
24,98 €
NICEPRICE
23,73 €
SCONTO
5%



SPEDIZIONE GRATIS
con corriere veloce per acquisti oltre 29,00 €.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Dettagli

Genere:Libro
Lingua: Inglese
Editore:

CRC Press

Pubblicazione: 06/2021
Edizione: 1° edizione





Note Editore

Coefficient of Variation (CV) is a unit free index indicating the consistency of the data associated with a real-world process and is simple to mold into computational paradigms. This book provides necessary exposure of computational strategies, properties of CV and extracting the metadata leading to efficient knowledge representation. It also compiles representational and classification strategies based on the CV through illustrative explanations. The potential nature of CV in the context of contemporary Machine Learning strategies and the Big Data paradigms is demonstrated through selected applications. Overall, this book explains statistical parameters and knowledge representation models.




Sommario

Chapter 1 Introduction to Coef¿cient of Variation 1.1 INTRODUCTION1.2 COEFFICIENT OF VARIATION 1.3 NORMALIZATION 3 1.4 PROPERTIES OF COEFFICIENT OF VARIATION1.5 LIMITATIONS OF COEFFICIENT OF VARIATION 1.6 CV INTERPRETATION1.7 SUMMARY1.8 EXERCISES Chapter 2 CV Computational Strategies 2.1 INTRODUCTION2.2 CV COMPUTATION OF POOLED DATA 2.3 COMPARISON OF CV WITH ENTROPYAND GINI INDEX2.4 CV FOR CATEGORICAL VARIABLES2.5 CVCOMPUTATIONBYMAP-REDUCESTRATEGIES 2.6 SUMMARY 2.7 EXERCISESChapter 3 Image Representation3.1 INTRODUCTION 3.2 CVIMAGE 3.3 CV FEATURE VECTOR 3.4 SUMMARY 3.5 EXERCISES Chapter 4 Supervised Learning4.1 INTRODUCTION4.2 PRE-PROCESSING (DECISION ATTRIBUTE CALIBRATION)4.3 CONDITIONAL CV4.4 CVGAIN (CV FOR ATTRIBUTE SELECTION) 4.5 ATTRIBUTE ORDERING WITH CVGAIN 4.6 CVDT FOR CLASSIFICATION 4.7 CVDT FOR REGRESSION 4.8 CVDT FOR BIG DATA 4.9 FUZZY CVDT 4.10 SUMMARY 4.11 EXERCISESChapter 5 Applications5.1 IMAGE CLUSTERING5.2 IMAGE SEGMENTATION5.3 FEATURE SELECTION5.4 MOOD ANALYSIS 5.5 CV FOR OPTIMIZATION5.6 HEALTH CARE 5.7 SOCIAL NETWORK 5.8 SUMMARY 5.9 EXERCISES










Altre Informazioni

ISBN:

9781032084190

Condizione: Nuovo
Dimensioni: 8.5 x 5.5 in Ø 0.59 lb
Formato: Brossura
Illustration Notes:30 b/w images
Pagine Arabe: 148


Dicono di noi