BLIND IMAGE DECONVOLUTION: PROBLEM FORMULATION AND EXISTING APPROACHES; Tom E. Bishop, S. Derin Babacan, Bruno Amizic, Aggelos K. Katsaggelos, Tony Chan, and Rafael MolinaIntroductionMathematical Problem FormulationClassification of Blind Image Deconvolution MethodologiesBayesian Framework for Blind Image DeconvolutionBayesian Modeling of Blind Image DeconvolutionBayesian Inference Methods in Blind Image DeconvolutionNon-Bayesian Blind Image Deconvolution ModelsConclusionsReferencesBLIND IMAGE DECONVOLUTION USING BUSSGANG TECHNIQUES: APPLICATIONS TO IMAGE DEBLURRING AND TEXTURE SYNTHESIS; Patrizio Campisi, Alessandro Neri, Stefania Colonnese, Gianpiero Panci, and Gaetano ScaranoIntroductionBussgang ProcessesSingle-Channel Bussgang DeconvolutionMultichannel Bussgang deconvolutionConclusionsReferencesBLIND MULTIFRAME IMAGE DECONVOLUTION USING ANISOTROPIC SPATIALLY ADAPTIVE FILTERING FOR DENOISING AND REGULARIZATION; Vladimir Katkovnik, Karen Egiazarian, and Jaakko AstolaIntroductionObservation Model and PreliminariesFrequency Domain EquationsProjection Gradient OptimizationAnisotropic LPA-ICI Spatially Adaptive FilteringBlind Deconvolution AlgorithmIdentifiability and ConvergenceSimulationsConclusionsAcknowledgmentsReferencesBAYESIAN METHODS BASED ON VARIATIONAL APPROXIMATIONS FOR BLIND IMAGE DECONVOLUTION; Aristidis Likas and Nikolas P. GalatsanosIntroductionBackground on Variational MethodsVariational Blind DeconvolutionNumerical ExperimentsConclusions and Future WorkAPPENDIX A: Computation of the Variational Bound F(q,?)APPENDIX B: Maximization of F(q,?)ReferencesDECONVOLUTION OF MEDICAL IMAGES FROM MICROSCOPIC TO WHOLE BODY IMAGES; Oleg V. Michailovich and Dan R. AdamIntroductionNonblind DeconvolutionBlind Deconvolution in Ultrasound ImagingBlind Deconvolution in SPECTBlind Deconvolution in Confocal MicroscopySummaryReferencesBAYESIAN ESTIMATION OF BLUR AND NOISE IN REMOTE SENSING IMAGING; André Jalobeanu, Josiane Zerubia, and Laure Blanc-FéraudIntroductionThe Forward ModelBayesian Estimation: Invert the Forward ModelPossible Improvements and Further DevelopmentResultsConclusionsAcknowledgmentsReferencesDECONVOLUTION AND BLIND DECONVOLUTION IN ASTRONOMY; Eric Pantin, Jean-luc Starck, and Fionn MurtaghIntroductionThe Deconvolution ProblemLinear Regularized MethodsCLEANBayesian MethodologyIterative Regularized MethodsWavelet-Based DeconvolutionDeconvolution and ResolutionMyopic and Blind DeconvolutionConclusions and Chapter SummaryAcknowledgmentsReferencesMULTIFRAME BLIND DECONVOLUTION COUPLED WITH FRAME REGISTRATION AND RESOLUTION ENHANCEMENT; Filip Šroubek, Jan Flusser, and Gabriel CristóbalIntroductionMathematical ModelPolyphase FormulationReconstruction of Volatile BlursBlind SuperresolutionExperimentsConclusionsAcknowledgmentsReferencesBLIND RECONSTRUCTION OF MULTIFRAME IMAGERY BASED ON FUSION AND CLASSIFICATION; Dimitrios Hatzinakos, Alexia Giannoula, and Jianxin HanIntroductionSystem OverviewRecursive Inverse Filtering with Finite Normal-Density Mixtures (RIF-FNM)Optimal Filter AdaptationEffects of NoiseThe Fusion and Classification Recursive Inverse Filtering Algorithm (FAC-RIF)Experimental ResultsFinal RemarksReferencesBLIND DECONVOLUTION AND STRUCTURED MATRIX COMPUTATIONS WITH APPLICATIONS TO ARRAY IMAGING; Michael K. Ng and Robert J. PlemmonsIntroductionOne-Dimensional Deconvolution FormulationRegularized and Constrained TLS FormulationNumerical AlgorithmsTwo-Dimensional Deconvolution ProblemsNumerical ExamplesApplication: High-Resolution Image ReconstructionConcluding Remarks and Current WorkAcknowledgmentsReferencesINDEX