libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

hélix-nielsen claus (curatore) - biomimetic membranes for sensor and separation applications

Biomimetic Membranes for Sensor and Separation Applications




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 01/2012
Edizione: 2012





Trama

This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed.
Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion andstabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.





Sommario

1 Sensing Meets Separation: Water Transport Across Biological Membranes Stanley D. Hillyard; 2 Nature Meets Technology: Forward Osmosis Membrane Technology Filicia Wicaksana, Anthony G. Fane, Chuyang Tang, and Rong Wang; 3 Polymer-Based Biomimetic Membranes for Desalination Manish Kumar, Michelle M. Payne, Sean K. Poust, and Julie L. Zilles; 4 Ion-Selective Biomimetic Membranes Henk Miedema; 5 Vesicle Arrays as Model-Membranes and Biochemical Reactor Systems Sune M. Christensen and Dimitrios Stamou; 6 Active Biomimetic Membranes Flemming Cornelius; 7 Passive Transport Across Biomimetic Membranes Karin Stibius, Sania Bäckström, and Claus Hélix-Nielsen; 8 Multi-scale Modeling of Biomimetic Membranes Hans Enggrob, Lars Yde, Mathias Gruber, and Himanshu Khandelia; 9 Regulation of Protein Function by Membrane Elastic Properties Jens A. Lundbæk and Olaf S. Andersen; 10 Large Scale Biomimetic Membrane Arrays Mark Perry, Christian Rein, and Jörg Vogel; 11 Systems for Production of Proteins for Biomimetic Membrane Devices Nicola Altamura and Giuseppe Calamita; 12 Strategies for Integrating Membrane Proteins in Biomembranes Jesper S. Hansen, Inés Plasencia, and Kamila Pszon-Bartosz; 13 Microfl uidic Encapsulation of Biomimetic Membranes Oliver Geschke; Index.





Autore

The Editor, born in 1964, Lemvig, Denmark, received his PhD in Physics in 1993 from the Technical University of Denmark. After several research positions, among which a postdoctoral fellowship at the Weill Medical College, Cornell University (1995-2000), he became an associate professor at the Technical University of Denmark. Currently he is the Research Director at Aquaporin, Lyngby, Denmark.










Altre Informazioni

ISBN:

9789400721838

Condizione: Nuovo
Collana: Biological and Medical Physics, Biomedical Engineering
Dimensioni: 235 x 155 mm
Formato: Copertina rigida
Illustration Notes:XVI, 292 p.
Pagine Arabe: 292
Pagine Romane: xvi


Dicono di noi