Part I Biomass resources 1. Introduction and context: global biomass resources – types of biomass, quantities and accessibility. Biomass from agriculture, forestry, energy crops and organic wastes Erik Dahlquist & Jochen Bundschuh1.1 Hard facts 1.2 Crops used primarily for food 1.2.1 Soybean 1.2.2 Rice 1.2.3 Wheat (Triticum spp.) 1.2.4 Corn (Zea mays) and cassava 1.2.5 Barley, rye and oats 1.2.6 Oil crops 1.2.7 Sugar cane 1.3 Energy crops 1.3.1 Switch grass 1.3.2 Giant Kings Grass 1.3.3 Hybrid poplar 1.3.4 Other proposed energy crops 1.3.5 Quorn 1.4 Animalian biomass and algae 1.4.1 Animalian food 1.4.2 Algae 1.5 Regional overviews 1.5.1 EU27 – an overall energy balance1.5.2 China – today and in year 2050 1.5.3 India 1.5.4 USA 1.5.5 Brazil 1.5.6 Africa south of the Sahara 1.6 Other regions 1.7 Global perspective 1.8 Questions for discussion 2. Chemical composition of biomass Torbjörn A. Lestander2.1 Introduction 2.1.1 A new biocarbon era 2.1.2 The potential of biomass for energy conversion 2.2 Major components of biomass 2.2.1 Water in biomass 2.2.2 Dry matter content 2.3 Organic matter 2.3.1 Cellulose 2.3.2 Hemicellulose 2.3.3 Lignin 2.3.4 Extractives 2.3.5 Sugars 2.3.6 Starch 2.3.7 Proteins 2.4 Inorganic substances 2.5 Energy content 2.6 Chemical compounds and biomass processing 2.6.1 Drying 2.6.2 Wet processing 2.6.3 Health aspects 2.6.4 Bulk handling 2.6.5 Heat treatment of biomass 2.7 Conclusion 2.8 Questions for discussion 3. Characterization of biomass using instruments – Measurement of forest and crop residues Robert Aulin3.1 Introduction 3.2 Quality aspects and sources of variation 3.2.1 Volume, weight and moisture content 3.2.2 Calorific value 3.2.3 Other parameters 3.3 The fuel chain and its impact on the moisture content 3.3.1 The fuel chain 3.3.2 Sources of variation in moisture content 3.3.2.1 The forest 3.3.2.2 Terminal storage 3.3.2.3 Transport 3.3.2.4 Site storage and fuel handling 3.4 Moisture measurement 3.4.1 Gravimetric moisture measurement 3.4.1.1 The gravimetric method 3.4.1.2 Sampling 3.4.1.3 Practical illustration 3.4.2 Instrumental methods 3.4.2.1 Introduction 3.4.2.2 Near-infrared spectroscopy (NIR) 3.4.2.3 Microwave spectroscopy (RF) 3.4.2.4 X-ray spectroscopy 3.4.2.5 Method selection3.5 Practical applications for moisture data 3.5.1 Real-time measurement 3.5.2 Price settlement 3.5.3 Logistics 3.5.4 Fuel mixing3.5.5 Boiler control 3.6 Future perspectives 4. Bioenergy in Brazil – from traditional to modern systems Semida Silveira4.1 From developing country to leading economy 4.2 From traditional fuelwood to multiple bioenergy systems 4.3 Forest-based biomass in Brazil 4.3.1 Fuel wood and charcoal – traditional uses of biomass in Brazil 4.4 Biofuels for transport 4.4.1 The development of modern bioethanol production 4.4.2 The development of biodiesel production 4.5 Bioenergy – opportunities for sustainable development 5. Biomass in different biotopes – an extensive resource Erik Dahlquist & Jochen Bundschuh5.1 Bioenergy in northern Europe 5.1.1 Different biotopes 5.2 Bioenergy in southern Europe 5.3 Biomass in the tropics 5.4 Questions for discussions 6. Organic waste as a biomass resource Eva Thorin, Thorsten Ahrens, Elias Hakalehto & Ari Jääskeläinen6.1 Introduction 6.2 Pre-treatment 6.2.1 Examples of pre-treatment 6.3 Biogas production 6.3.1 Basics of the biogas process 6.3.2 Technical background for waste-to-biogas utilization strategies 6.3.3 Results from waste digestion 6.3.4 Example for a local implementation strategy 6.4 Combustion of waste 6.4.1 Technical background 6.4.2 Examples of combustion of waste 6.4.3 Development considerations 6.5 Examples of use of organic waste in other conversion processes 6.5.1 Ethanol and butanol from organic waste 6.5.2 Hydrothermal carbonization of organic waste fractions 6.5.2.1 HTC reactions 6.5.2.2 Substrates 6.5.2.3 HTC of a selected biowaste substrate 6.5.3 Pyrolysis and gasification of organic waste 6.6 Questions for discussion Part II Systems utilizing biomass – system optimization 7. System aspects of biomass use in complex applications: biorefineries for production of heat, electric power and chemicals Erik Dahlquist & Jochen Bundschuh7.1 Traditional use of wood 7.2 Use of waste and wood for chemicals 7.3 Use of herbs for medical and other applications 8. Biorefineries using wood for production of speciality cellulose fibers, lignosulfonates, vanillin, bioethanol and biogas – the Borregaard Sarpsborg example Stefan Backa, Martin Andresen & Trond Rojahn8.1 Introduction 8.2 The borregaard sarpsborg biorefinery of today 8.2.1 Lignocellulosic crops and residues 8.2.2 Biomaterials, specialty celluloses 8.2.3 Bioethanol 8.2.4 Biomaterials, lignosulfonates 8.2.5 Food/chemicals, vanillin 8.3 Energy 8.4 Environment 8.5 The future 8.6 Conclusion 9. Biorefineries using crops for production of ethanol, biogas and chemicals – a largescale demonstration in Nanyang, Henan province, China of the bio-ethanol industry under Tianguan recycling economic mode Du Feng-Guang & FengWensheng9.1 Introduction 9.2 Domestic and international background and conditions related this case study 9.3 Qualitative analysis of the case study 9.3.1 The scope of the case study 9.3.2 Description of the basic characteristics of the case study 9.3.3 The recycling economic diagram and its analysis of this case 9.4 Quantitative analysis of this case study 9.4.1 Changes in four major indicator systems 9.5 Energy flow analysis 9.5.1 The diagram of system general material flow 9.6 General material flow analysis 9.6.1 Analysis of systems group diversion 9.7 System improvements 9.8 Conclusion 10. Bioenergy polygeneration, carbon capture and storage related to the pulp and paper industry and power plants Jinyue Yan, Muhammad Raza Naqvi & Erik Dahlquist10.1 Introduction 10.2 Biorefinery systems in the pulp industry 10.2.1 Black liquor gasification (BLG) based biofuel production 10.2.2 Black liquor gasification-based power generation 10.3 Biofuel upgrading with pellet production 10.4 Performance and sustainability analysis 10.4.1 Performance of BLG-based biofuel production 10.4.2 Performance of BLG-based electricity generation 10.4.3 Performance of pellet production system 10.5 Bioenergy systems and CCS potential 10.5.1 BLG systems with CCS 10.6 Conclusions 11. Biofuels and green aviation Emily Nelson11.1 Introduction 11.2 Aviation fuel requirements 11.2.1 Jet fuel specifications 11.2.2 Alternative jet fuel specifications 11.3 Fuel properties 11.3.1 Effect of composition on fuel properties 11.3.2 Emissions 11.4 Biofuel feedstocks for aviation fuels 11.4.1 Crop production for oil from seeds 11.4.2 Crop production for oil from algae 11.5 Manufacturing stages 11.5.1 Dewatering, crude oil extraction and pre-processing 11.5.2 Transesterification 11.5.3 Hydroprocessing 11.5.4 Other strategies 11.5.5 Co-products 11.6 Life cycle assessment 11.7 Conclusions 12. Pulp and paper industry – trends for the future Erik Dahlquist & Jochen Bundschuh 13. Biorefineries using waste – production of energy and chemicals from biomasses by micro-organisms Elias Hakalehto, Ari Jääskeläinen, Tarmo Humppi & Lauri Heitto13.1 Introduction 13.2 Sustainable production of fuels and chemicals from wastes and other biomasses 13.2.1 Circulation of matter and chemical energy in microbiological processes 13.3 Replacing fossil fuels by the biomasses as raw materials 13.4 Microbes carry out the reactions with energetically feasible biocatalysis13.4.1 Ecological thinking based on understanding microscopic interactions 13.4.2 Air and water pollution diminished by natural processes 13.5 Transport of fuels and chemicals less abundant and risky when local sources are exploited 13.6 Beneficial impact on the socio-economic structures of the new, small or medium sized bioindustries 13.7 Biomass and raw materials 13.7.1 Enzymatic hydrolysis of macromolecules 13.7.2 Hemicellulose, cellulose and lignin 13.7.3 Starch and other saccharides