libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

chauvin yves (curatore); rumelhart david e. (curatore) - backpropagation

Backpropagation Theory, Architectures, and Applications

;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
195,98 €
NICEPRICE
186,18 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 02/1995
Edizione: 1° edizione





Note Editore

Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.




Sommario

Contents: D.E. Rumelhart, R. Durbin, R. Golden, Y. Chauvin, Backpropagation: The Basic Theory. A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K.J. Lang, Phoneme Recognition Using Time-Delay Neural Networks. C. Schley, Y. Chauvin, V. Henkle, Automated Aircraft Flare and Touchdown Control Using Neural Networks. F.J. Pineda, Recurrent Backpropagation Networks. M.C. Mozer, A Focused Backpropagation Algorithm for Temporal Pattern Recognition. D.H. Nguyen, B. Widrow, Nonlinear Control with Neural Networks. M.I. Jordan, D.E. Rumelhart, Forward Models: Supervised Learning with a Distal Teacher. S.J. Hanson, Backpropagation: Some Comments and Variations. A. Cleeremans, D. Servan-Schreiber, J.L. McClelland, Graded State Machines: The Representation of Temporal Contingencies in Feedback Networks. S. Becker, G.E. Hinton, Spatial Coherence as an Internal Teacher for a Neural Network. J.R. Bachrach, M.C. Mozer, Connectionist Modeling and Control of Finite State Systems Given Partial State Information. P. Baldi, Y. Chauvin, K. Hornik, Backpropagation and Unsupervised Learning in Linear Networks. R.J. Williams, D. Zipser, Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. P. Baldi, Y. Chauvin, When Neural Networks Play Sherlock Homes. P. Baldi, Gradient Descent Learning Algorithms: A Unified Perspective.




Autore

Yves Chauvin, David E. Rumelhart










Altre Informazioni

ISBN:

9780805812589

Condizione: Nuovo
Collana: Developments in Connectionist Theory Series
Dimensioni: 9 x 6 in Ø 2.71 lb
Formato: Copertina rigida
Pagine Arabe: 574


Dicono di noi