libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

ashouri amir h.; palermo gianluca; cavazos john; silvano cristina - automatic tuning of compilers using machine learning

Automatic Tuning of Compilers Using Machine Learning

; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
54,98 €
NICEPRICE
52,23 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 01/2018
Edizione: 1st ed. 2018





Trama

This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that, in fact, many of the available passes tend to counteract one another. After providing a comprehensive survey of currently available methodologies, including many experimental comparisons with state-of-the-art compiler frameworks, the book describes new approaches to solving the problem of selecting the best compiler optimizations and the phase-ordering problem, allowing readers to overcome the enormous complexity of choosing the right order of optimizations for each code segment in an application. As such, the book offers a valuable resource for a broad readership, including researchers interested in Computer Architecture, Electronic Design Automation and Machine Learning, as well as computer architects and compiler developers.





Sommario

Background.- DSE Approach for Compiler Passes.- Addressing the Selection Problem of Passes using ML.- Intermediate Speedup Prediction for the Phase-ordering Problem.- Full-sequence Speedup Prediction for the Phase-ordering Problem.- Concluding Remarks. 











Altre Informazioni

ISBN:

9783319714882

Condizione: Nuovo
Collana: SpringerBriefs in Applied Sciences and Technology
Dimensioni: 235 x 155 mm Ø 454 gr
Formato: Brossura
Illustration Notes:XVII, 118 p. 23 illus., 6 illus. in color.
Pagine Arabe: 118
Pagine Romane: xvii


Dicono di noi