
Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This book offers a self-contained introduction to the world of robust combinatorial optimization. It explores decision-making using the min-max and min-max regret criteria, while also delving into the two-stage and recoverable robust optimization paradigms. It begins by introducing readers to general results for interval, discrete, and budgeted uncertainty sets, and subsequently provides a comprehensive examination of specific combinatorial problems, including the selection, shortest path, spanning tree, assignment, knapsack, and traveling salesperson problems.
The book equips both students and newcomers to the field with a grasp of the fundamental questions and ongoing advancements in robust optimization. Based on the authors’ years of teaching and refining numerous courses, it not only offers essential tools but also highlights the open questions that define this subject area.
1. Introduction.- 2. Basic Concepts.- 3. Robust Problems.- 4. General Reformulation Results.- 5. General Solution Methods.- 6. Robust election Problems.- 7. Robust Shortest Path Problems.- 8. Robust Spanning Tree Problems.- 9. Other Combinatorial Problems.- 10. Other Models for Robust Optimization.- 11. Open Problems.
Marc Goerigk is a Professor and Chair of Business Decisions and Data Science at the University of Passau, Germany. He has previously held positions at the Universities of Siegen, Lancaster (UK), Kaiserslautern, and Göttingen, where he pursued his studies in mathematics. Marc has a keen interest in optimization under uncertainty.
Michael Hartisch currently serves as a temporary professor of Analytics & Mixed-Integer Optimization at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Prior to this role, he was acting chair of Network and Data Science Management at the University of Siegen, Germany. His academic journey began with studies in mathematics at Friedrich Schiller University Jena, Germany. Michael’s primary focus is on optimization under uncertainty.


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.