Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
Artificial Intelligence and Big Data in Cardiology systematically describes and technically reviews the latest applications of AI and big data within cardiology. It is ideal for use by the trainee and practicing cardiologist andinformatician seeking an up-to-date resource on the topic with which to aid them in developing a thorough understanding of both basic concepts and recent advances in the field.
Introduction.- AI and Machine Learning: the Basics.- From Machine Learning to Deep Learning.- Measurement and Quantification.- Diagnosis.- Outcome Prediction.- Quality Control.- AI and Decision Support.- AI in the Real World.- Analysis of Non-imaging Data.- Conclusions.
Dr. Duchateau is currently Associate Professor (Maître de Conférences) at the Université Lyon 1 and the CREATIS lab in Lyon, France, and Junior Member of the Institut Universitaire de France (IUF). His research is on the development of new statistical and machine learning approaches for the better understanding of disease apparition and evolution from medical imaging data. On the applicative side, his work has special dedication to the study of cardiac function and 2D/3D myocardial shape, motion and deformation patterns. It has a strong focus on heart failure populations, looked through echocardiographic and magnetic resonance imaging data.
Dr. King is currently a Reader in Medical Image Analysis at the School of Biomedical Engineering and Imaging Sciences at King’s College London. His research aims to develop novel machine learning methods for a range of medical applications, but with a special focus on cardiology. He works closely with clinicians to exploit the power of machine learning to solve clinically relevant problems. Notable recent successes include the prediction of treatment outcome for heart failure and automated quantification of cardiac function for patient risk stratification.Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.