
Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This book constitutes the refereed proceedings of the 6th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2021, held during September 13-17, 2021. The workshop was planned to take place in Bilbao, Spain, but was held virtually due to the COVID-19 pandemic.
The 12 full papers presented in this book were carefully reviewed and selected from 21 submissions. They focus on the following topics: Temporal Data Clustering; Classification of Univariate and Multivariate Time Series; Multivariate Time Series Co-clustering; Efficient Event Detection; Modeling Temporal Dependencies; Advanced Forecasting and Prediction Models; Cluster-based Forecasting; Explanation Methods for Time Series Classification; Multimodal Meta-Learning for Time Series Regression; and Multivariate Time Series Anomaly Detection.
Oral Presentation.- Ranking by Aggregating Referees: Evaluating the Informativeness of Explanation Methods for Time Series Classification.- State Space approximation of Gaussian Processes for time-series forecasting.- Fast Channel Selection for Scalable Multivariate Time Series Classification.- Temporal phenotyping for characterisation of hospital care pathways of COVID patients.- A New Multivariate Time Series Co-clustering Non-Parametric Model Applied to Driving-Assistance Systems Validation.- TRAMESINO: Trainable Memory System for Intelligent Optimization of Road Traffic Control.- Detection of critical events in renewable energy production time series.- Poster Presentation.- Multimodal Meta-Learning for Time Series Regression.- Cluster-based Forecasting for Intermittent and Non-intermittent Time Series.- State discovery and prediction from multivariate sensor data.- RevDet: Robust and Memory Efficient Event Detection and Tracking in Large News Feeds.- From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information.


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.