
Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This textbook introduces the fundamental concepts and methods of statistical learning. It uses Python and provides a unique approach by blending theory, data examples, software code, and exercises from beginning to end for a profound yet practical introduction to statistical learning.
The book consists of three parts: The first one presents data in the framework of probability theory, exploratory data analysis, and unsupervised learning. The second part on inferential data analysis covers linear and logistic regression and regularization. The last part studies machine learning with a focus on support-vector machines and deep learning. Each chapter is based on a dataset, which can be downloaded from the book's homepage.
In addition, the book has the following features:
This book is for everyone who wants to understand and apply concepts and methods of statistical learning. Typical readers are graduate and advanced undergraduate students in data-intensive fields such as computer science, biology, psychology, business, and engineering, and graduates preparing for their job interviews.
Part I: Data.- Chapter 1: Fundamentals of Data.- Chapter 2: Exploratory Data Analysis.- Chapter 3: Unsupervised Learning.- Part II: Inferential Data Analyses.- Chapter 4: Linear Regression.- Chapter 5: Logistic Regression.- Chapter 6: Regularization.- Part III: Machine Learning.- Chapter 7: Support-Vector Machines.- Chapter 8: Deep Learning.
Johannes Lederer is a Professor and the Chair of Mathematics for Data-Driven Methods at the Department of Mathematics, Computer Science, and Natural Sciences, University of Hamburg, Germany. Previously, he was a Professor of Statistics at the Ruhr-University Bochum. He received his PhD in mathematics from the ETH Zürich and subsequently held positions at UC Berkeley, Cornell University, and the University of Washington. He has taught statistical learning and related courses in the US, Belgium, Hong Kong, and Germany to applied and mathematical audiences alike.


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.