A. Garbentheorie.- § 0. Garben und Prägarben von Mengen.- § 1. Garben mit algebraischer Struktur.- § 2. Kohärente Garben und kohärente Funktoren.- §3. Komplexe Räume.- § 4. Weiche und welke Garben.- B. Cohomologietheorie.- § 1. Welke Cohomologietheorie.- § 2. ?echsche Cohomologietheorie.- §3. Leraysches Lemma und Isomorphiesatz ?Haq (X,S) ?? ?Hq(X,S) ?? Hq(X,S).- I. Kohärenzsatz für endliche holomorphe Abbildungen.- § 1. Endliche Abbildungen und Bildgarben.- § 2. Allgemeiner Weierstraßscher Divisionssatz und Weierstraßisomorphismus.- § 3. Der Kohärenzsatz für endliche holomorphe Abbildungen.- II. Differentialformen und Dolbeaulttheorie.- § 1. Komplex-wertige Differentialformen auf differenzierbaren Mannigfaltigkeiten.- § 2. Differentialformen auf komplexen Mannigfaltigkeiten.- § 3. Das Lemma von Grothendieck.- § 4. Dolbeaultsche Cohomologietheorie.- Supplement zu § 4.1. Ein Satz von Hartogs.- III. Theoreme A und B für kompakte Quader im ?m.- § 1. Heftungslemmata von Cousin und Cartan.- § 2. Verheftung von Garbenepimorphismen.- § 3. Theoreme A und B.- IV. Steinsche Räume.- §1. Der Verschwindungssatz Hq(X,S)=0.- § 2. Schwache Holomorphiekonvexität und Pflaster.- §3. Holomorph-vollständige Räume.- § 4. Quaderausschöpfungen sind Steinsch.- V. Anwendungen der Theoreme A und B.- § 1. Beispiele Steinscher Räume.- § 2. Cousin-Probleme und Poincaré-Problem.- § 3. Divisorenklassen und lokal-freie analytische Garben vom Rang 1.- §4. Garbentheoretische Charakterisierung Steinscher Räume.- § 5. Garbentheoretische Charakterisierung Steinscher Bereiche im ?m.- § 6. Topologisierung von Schnittmoduln kohärenter Garben.- § 7. Charaktertheorie Steinscher Algebren.- VI. Endlichkeitssatz.- § 1. Quadrat-integrierbare holomorpheFunktionen.- § 2. Monotone Orthogonalbasen.- §3. Meßatlanten.- § 4. Beweis des Endlichkeitssatzes.- VII. Kompakte Riemannsche Flächen.- § 1. Divisoren und lokal-freie Garben ?(D).- § 2. Existenz globaler meromorpher Schnittflächen.- § 3. Der Satz von Riemann-Roch (vorläufige Fassung).- § 4. Struktur lokal-freier Garben.- Supplement zu § 4. Satz von Riemann-Roch für lokal-freie Garben.- §5. Die Gleichung H1(X,?)=0.- § 6. Der Dualitätssatz von Serre.- § 7. Der Satz von Riemann-Roch (endgültige Fassung).- §8. Spaltung lokal-freier Garben.- Literatur.- Symbolverzeichnis.