libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

sanz jorge l.c.; hinkle eric b.; jain anil k. - radon and projection transform-based computer vision
Zoom

Radon and Projection Transform-Based Computer Vision Algorithms, A Pipeline Architecture, and Industrial Applications

; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
54,98 €
NICEPRICE
52,23 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 12/2011
Edizione: Softcover reprint of the original 1st ed. 1988





Trama

This book deals with novel machine vision architecture ideas that make real-time projection-based algorithms a reality. The design is founded on raster-mode processing, which is exploited in a powerful and flexible pipeline. We concern ourselves with several image analysis algorithms for computing: projections of gray-level images along linear patterns (i. e. , the Radon transform) and other curved contours; convex hull approximations; the Hough transform for line and curve detection; diameters; moments and principal components, etc. Addition­ ally, we deal with an extensive list of key image processing tasks, which involve generating: discrete approximations of the inverse Radon transform operator; computer tomography reconstructions; two-dimensional convolutions; rotations and translations; multi-color digital masks; the discrete Fourier transform in polar coordinates; autocorrelations, etc. Both the image analysis and image processing algorithms are supported by a similar architecture. We will also of some of the above algorithms to the solution of demonstrate the applicability various industrial visual inspection problems. The algorithms and architectural ideas surveyed here unleash the power of the Radon and other non-linear transformations for machine vision applications. We provide fast methods to transform images into projection space representa­ tions and to backtrace projection-space information into the image domain. The novelty of this approach is that the above algorithms are suitable for implementa­ tion in a pipeline architecture. Specifically, random access memory and other dedicated hardware components which are necessary for implementation of clas­ sical techniques are not needed for our algorithms.




Sommario

1. Introduction.- 1.1 Machine Vision Architectures.- 1.2 The Radon Transform and the PPPE Architecture.- 2. Model and Computation of Digital Projections.- 2.1 Representation of Digital Lines.- 2.2 Generation of Projection Data.- 2.3 Noise Considerations.- 3. Architectures.- 3.1 The Contour Image Generator.- 3.2 The Projection Data Collector.- 3.3 Additional Hardware.- 3.4 Putting It All Together: P3E.- 3.5 Implementation in Commercially Available Pipelines.- 4. Projections Along General Contours.- 5. P3E-Based Image Analysis Algorithms and Techniques.- 5.1 Computing Convex Hulls, Diameters, Enclosing Boxes, Principal Components, and Related Features.- 5.2 Computing Hough Transforms for Line and Curve Detection.- 5.3 Generating Polygonal Masks.- 5.4 Generating Multi-Colored Masks.- 5.5 Non-Linear Masks.- 6. P3E-Based Image Processing Algorithms and Techniques.- 6.1 Non-iterative Reconstruction.- 6.2 Iterative Reconstruction.- 6.3 Two-Dimensional Convolution.- 6.4 Rotation and Translation.- 6.5 Computerized Tomography Reconstruction.- 6.6 Autocorrelation.- 6.7 Polar Fourier Transform and Object Classification.- 7. Radon Transform Theory for Random Fields and Optimum Image Reconstruction from Noisy Projections.- 7.1 Radon Transform Theory of Random Fields.- 7.2 Optimum Reconstruction from Noisy Projections.- 8. Machine Vision Techniques for Visual Inspection.- 9. Conclusion.










Altre Informazioni

ISBN:

9783642730146

Condizione: Nuovo
Collana: Springer Series in Information Sciences
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:VIII, 123 p.
Pagine Arabe: 123
Pagine Romane: viii


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X