libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

pohlers wolfram - proof theory

Proof Theory The First Step into Impredicativity




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
75,98 €
NICEPRICE
72,18 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2008
Edizione: 1st ed. 1989. 2nd printing 2008





Trama

The kernel of this book consists of a series of lectures on in?nitary proof theory which I gave during my time at the Westfalische ¨ Wilhelms–Universitat ¨ in Munster ¨ . It was planned as a successor of Springer Lecture Notes in Mathematics 1407. H- ever, when preparing it, I decided to also include material which has not been treated in SLN 1407. Since the appearance of SLN 1407 many innovations in the area of - dinal analysis have taken place. Just to mention those of them which are addressed in this book: Buchholz simpli?ed local predicativity by the invention of operator controlled derivations (cf. Chapter 9, Chapter 11); Weiermann detected applications of methods of impredicative proof theory to the characterization of the provable recursive functions of predicative theories (cf. Chapter 10); Beckmann improved Gentzen’s boundedness theorem (which appears as Stage Theorem (Theorem 6. 6. 1) in this book) to Theorem 6. 6. 9, a theorem which is very satisfying in itself - though its real importance lies in the ordinal analysis of systems, weaker than those treated here. Besides these innovations I also decided to include the analysis of the theory (? –REF) as an example of a subtheory of set theory whose ordinal analysis only 2 0 requires a ?rst step into impredicativity. The ordinal analysis of(? –FXP) of non- 0 1 0 monotone? –de?nable inductive de?nitions in Chapter 13 is an application of the 1 analysis of(? –REF).




Sommario

1 Historical Background.- 2 Primitive Recursive Functions and Relations.- 2.1 Primitive Recursive Functions.- 2.2 Primitive Recursive Relations.- 3 Ordinals.- 3.1 Heuristic.- 3.2 Some Basic Facts on Ordinals.- 3.3 Fundamentals of Ordinal Arithmetic.- 3.3.1 A Notation System for the Ordinals below epsilon nought.- 3.4 The Veblen Hierarchy.- 3.4.1 Preliminaries.- 3.4.2 The Veblen Hierarchy.- 3.4.3 A Notation System for the Ordinals below Gamma nought.- 4 Pure Logic.- 4.1 Heiristics.- 4.2 First and Second Order Logic.- 4.3 The Tait calculus.- 4.4 Trees and the Completeness Theorem.- 4.5 Gentzens Hauptsatz for Pure First Order Logic.- 4.6 Second Order Logic.- 5 Truth Complexities for Pi 1-1-Sentences.- 5.1 The language of Arithmetic.- 5.2 The Tait language for Second Order Arithmetic.- 5.3 Truth Complexities for Arithmetical Sentences.- 5.4 Truth Complexities for Pi 1-1-Sentences.- 6 Inductive Definitions.- 6.1 Motivation.- 6.2 Inductive Definitions as Monotone Operators.- 6.3 The Stages of an Inductive Definition.- 6.4 Arithmetically Definable Inductive Definitions.- 6.5 Inductive Definitions, Well-Orderings and Well-Founded Trees.- 6.6 Inductive Definitions and Truth Complexities.- 6.7 The Pi-1-1- Ordinal of a Theory.- 7 The Ordinal Analysis for Pean Arithmetic.- 7.1 The Theory PA.- 7.2 The Theory NT.- 7.3 The Upper Bound.- 7.4 The Lower Bound.- 7.5 The Use of Gentzen's Consistency Proof for Hilbert's Programme.- 7.5.1 On the Consistency of Formal and Semi-Formal Systems.- 7.5.2 The Consistency of NT.- 7.5.3 Kreisel's Counterexample.- 7.5.4 Gentzen's Consistency Proof in the Light of Hilbert's Programme.- 8 Autonomous Ordinals and the Limits of Predicativity.- 8.1 The Language L-kappa.- 8.2 Semantics for L-kappa.- 8.3 Autonomous Ordinals.- 8.4 The Upper Bound for Autonomous Ordinals.- 8.5 The Lower Bound for Autonomous Ordinals.- 9 Ordinal Analysis of the Theory for Inductive Definitions.- 9.1 The Theory ID1.- 9.2 The Language L infinity (NT).- 9.3 The Semi-FormalSystem for L infinity (NT).- 9.3.1 Semantical Cut-Elimination.- 9.3.2 Operator Controlled Derivations.- 9.4 The Collapsing Theorem for ID1.- 9.5 The Upper Bound.- 9.6 The Lower Bound.- 9.6.1 Coding Ordinals in L(NT).- 9.6.2 The Well-Ordering Proof.- 9.7 Alternative Interpretations for Omega.- 10 Provably Recursive Functions of NT.- 10.1 Provably Recursive Functions of a Theory.- 10.2 Operator Controlled Derivations.- 10.3 Iterating Operators.- 10.4 Cut Elimination for Operator Controlled Derivations.- 10.5 The Embedding of NT.- 10.6 Discussion.- 11 Ordinal Analysis for Kripke Platek Set Theory with infinity.- 11.1 Naive Set Theory.- 11.2 The Language of Set Theory.- 11.3 Constructible Sets.- 11.4 Kripke Platek Set Theory.- 11.5 ID1 as a Subtheory of Kp-omega.- 11.6 Variations of KP-omega and Axiom beta.- 11.7 The Sigma Ordinal of KP-omega.- 11.8 The Theory of Pi-2 Reflection.- 11.9 An Infinite Verification Calculus for the Constructible Hierarchy.- 11.10 A Semi-Formal System for Ramified Set Theory.- 11.11 The Collapsing Theorem for Ramified Set Theory.- 11.12 Ordinal Analysis for Kripke Platek Set Theory.- 12 Predicativity Revisited.- 12.1 Admissible Extensions.- 12.2 M-Logic.- 12.3 Extending Semi-Formal Systems.- 12.4 Asymmetric Interpretations.- 12.5 Reduction of T+ to T.- 12.6 The Theories KP n and KP 0-n.- 12.7 The Theories KPl 0 and KP i 0.- 13 Non-Monotone Inductive Definitions.- 13.1 Non-Monotone Inductive Definitions.- 13.2 Prewellorderings.- 13.3 The Theory for Pi 0-1 definable Fixed-Points.- 13.4 ID1 as a Sub-Theory of the Theory for Pi 0-1 definable Fixed-Points.- 13.5 The Upper Bound for the Proof theoretical Ordinal of Pi 0-1-FXP.- 14 Epilogue.




Autore

Wolfram Pohlers (born 1943) is Full Professor and Director of the Institute for Mathematical Logic and Foundational Resarch at the Westfälische Wilhelms-Universität in Münster, Germany. He received his scientific training at the University of Munich where he worked as an Associate Professor from 1980 to 1985. From 1989 to 1990 he was a visiting scholar at the MSRI in Berkley and in 2005 he taught at the Ohio State University in Columbus.











Altre Informazioni

ISBN:

9783540693185

Condizione: Nuovo
Collana: Universitext
Dimensioni: 235 x 155 mm Ø 1200 gr
Formato: Brossura
Illustration Notes:XIV, 374 p. 5 illus.
Pagine Arabe: 374
Pagine Romane: xiv


Dicono di noi