libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

fischer gerd - ebene algebraische kurven

Ebene algebraische Kurven




Disponibilità: Normalmente disponibile in 10 giorni


PREZZO
48,98 €
NICEPRICE
46,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Tedesco
Edizione: 1994





Sommario

0 Einführung.- 0.1 Geraden.- 0.2 Kreise.- 0.3 Neilsche Parabel.- 0.4 Newtonscher Knoten.- 0.5 Cartesisches Blatt.- 0.6 Zykloiden.- 0.7 Kleinsche Quartiken.- 0.8 Stetige Kurven.- 1 Affin-algebraische Kurven und ihre Gleichungen.- 1.1 Varietät einer Gleichung.- 1.2 Affin-algebraische Kurven.- 1.3 Lemma von Study.- 1.4 Komponentenzerlegung.- 1.5 Irreduzibilität und Zusammenhang.- 1.6 Minimalpolynom.- 1.7 Grad.- 1.8 Schnittpunkte mit einer Geraden.- 2 Der projektive Abschluß.- 2.1 Unendlich-ferne Punkte.- 2.2 Projektive Ebene.- 2.3 Projektiver Abschluß einer Kurve.- 2.4 Komponentenzerlegung.- 2.5 Schnittmultiplizität für Kurve und Gerade.- 2.6 Schnitt von zwei Kurven.- 2.7 Satz von Bézout.- 3 Tangenten und Singularitäten.- 3.1 Glatte Punkte.- 3.2 Singularitätenmenge.- 3.3 Lokale Ordnung.- 3.4 Tangenten in singulären Punkten.- 3.5 Ordnung und Schnittmultiplizität.- 3.6 Formel von Euler.- 3.7 Kurven durch vorgegebene Punkte.- 3.8 Anzahl der Singularitäten.- 4 Polaren und Hesse-Kurve.- 4.1 Polaren.- 4.2 Eigenschaften der Polaren.- 4.3 Schnitt der Kurve mit ihrer Polaren.- 4.4 Hesse-Kurve.- 4.5 Schnitt der Kurve mit ihrer Hesse-Kurve.- 4.6 Beispiele.- 5 Duale Kurve und Plückerformeln.- 5.1 Duale Kurve.- 5.2 Algebraizität der dualen Kurve.- 5.3 Irreduzibilität der dualen Kurve.- 5.4 Lokale numerische Invarianten.- 5.5 Biduale Kurve.- 5.6 Einfache Doppelpunkte und Spitzen.- 5.7 Plückerformeln.- 5.8 Beispiele.- 5.9 Beweis der Plückerformeln.- 6 Der Ring der konvergenten Potenzreihen.- 6.1 Globale und lokale Irreduzibilität.- 6.2 Formale Potenzreihen.- 6.3 Konvergente Potenzreihen.- 6.4 Banachalgebren.- 6.5 Substitution von Potenzreihen.- 6.6 Ausgezeichnete Variable.- 6.7 Weierstraßscher Vorbereitungssatz.- 6.8 Beweise.- 6.9 Satz über implizite Funktionen.-6.10 Henselsches Lemma.- 6.11 Teibarkeit im Potenzreihenring.- 6.12 Keime analytischer Mengen.- 6.13 Lemma von Study.- 6.14 Lokale Zweige.- 7 Parametrisierung der Kurvenzweige durch Puiseux-Reihen.- 7.1 Problemstellung.- 7.2 Theorem über die Puiseux-Reihe.- 7.3 Träger einer Potenzreihe.- 7.4 Quasihomogenes Initialpolynom.- 7.5 Der Iterationsschritt.- 7.6 Die Iteration.- 7.7 Formale Parametrisierungen.- 7.8 Theorem von Puiseux (geometrisch).- 7.9 Beweis.- 7.10 Variation der Lösungen.- 7.11 Konvergenz der Puiseux-Reihe.- 7.12 Linearfaktorzerlegung von Weierstraßpolynomen.- 8 Tangenten und Schnittmultiplizitäten von Kurvenkeimen.- 8.1 Tangenten von Kurvenkeimen.- 8.2 Tangenten in glatten und singulären Punkten.- 8.3 Lokale Schnittmultiplizität mit einer Geraden.- 8.4 Lokale Schnittmultiplizität mit einem irreduziblen Keim.- 8.5 Lokale Schnittmultiplizität von Kurvenkeimen.- 8.6 Schnittmultiplizität und Ordnung.- 8.7 Lokale und globale Schnittmultiplizität.- 9 Die Riemannsche Fläche zu einer algebraischen Kurve.- 9.1 Riemannsche Flächen.- 9.2 Beispiele.- 9.3 Desingularisierung einer algebraische Kurve.- 9.4 Beweis.- 9.5 Zusammenhang einer Kurve.- 9.6 Formel von Riemann-Hurwitz.- 9.7 Geschlechtsformel für glatte Kurven.- 9.8 Geschlechtsformel für Plückerkurven.- 9.9 Geschlechtsformel von Max Noether.- A.1 Die Resultante.- A 1.1 Resultante und gemeinsame Nullstellen.- A 1.2 Diskriminante.- A 1.3 Resultante homogener Polynome.- A 1.4 Resultante und Linearfaktoren.- A.2 Überlagerungen.- A 2.1 Definitionen.- A 2.2 Eigentliche Abbildungen.- A 2.3 Liftung von Wegen.- A.3 Der Satz über implizite Funktionen.- A.4 Das Newton-Polygon.- A 4.1 Das Newton-Polygon einer Potenzreihe.- A 4.2 Das Newton-Polygon eines Weierstraßpolynoms.- A.5 Eine numerische Invariante vonKurvensingularitäten.- A 5.1 Analytische Äquivalenz von Singularitäten.- A 5.2 Grad einer Singularität.- A 5.3 Allgemeine Klassenformel.- A 5.4 Allgemeine Geschlechtsformel.- A 5.5 Grad und Ordnung.- A 5.6 Beispiele.- A.6 Die Ungleichung von Harnack.- A 6.1 Reell-algebraische Kurven.- A 6.2 Zusammenhangskomponenten und Grad.- A 6.3 Homologie mit Koeffizienten in ?/2?.- Symbolverzeichnis.




Autore

Gerd Fischer ist Autor der bekannten Lehrbücher "Lineare Algebra" und "Analytische Geometrie" und Professor am Mathematischen Institut der Universität Düsseldorf.










Altre Informazioni

ISBN:

9783528072674

Condizione: Nuovo
Collana: vieweg studium; Aufbaukurs Mathematik
Dimensioni: 229 x 162 mm
Formato: Brossura
Illustration Notes:X, 177 S. Mit zahlr. Abb.
Pagine Arabe: 177
Pagine Romane: x


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X