libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

tanaka akinori; tomiya akio; hashimoto koji - deep learning and physics

Deep Learning and Physics

; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
86,98 €
NICEPRICE
82,63 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 02/2022
Edizione: 1st ed. 2021





Trama

What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? 

In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? 

This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics.

In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially providesprogress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. 

This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks.

We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.





Sommario

Chapter 1: Forewords: Machine learning and physics.- Part I Physical view of deep learning.- Chapter 2: Introduction to machine learning.- Chapter 3: Basics of neural networks.- Chapter 4: Advanced neural networks.- Chapter 5: Sampling.- Chapter 6: Unsupervised deep learning.- Part II Applications to physics.- Chapter 7: Inverse problems in physics.- Chapter 8: Detection of phase transition by machines.- Chapter 9: Dynamical systems and neural networks.- Chapter 10: Spinglass and neural networks.- Chapter 11: Quantum manybody systems, tensor networks and neural networks.- Chapter 12: Application to superstring theory.- Chapter 13: Epilogue.- Bibliography.- Index.




Autore

Akinori Tanaka, Akio Tomiya, Koji Hashimoto










Altre Informazioni

ISBN:

9789813361102

Condizione: Nuovo
Collana: Mathematical Physics Studies
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XIII, 207 p. 46 illus., 29 illus. in color.
Pagine Arabe: 207
Pagine Romane: xiii


Dicono di noi