Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This first of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It studies metric spaces and general topology. It starts with the concept of the metric which is an abstraction of distance in the Euclidean space. The special structure of a metric space induces a topology that leads to many applications of topology in modern analysis and modern algebra, as shown in this volume. This volume also studies topological properties such as compactness and connectedness. Considering the importance of compactness in mathematics, this study covers the Stone–Cech compactification and Alexandroff one-point compactification. This volume also includes the Urysohn lemma, Urysohn metrization theorem, Tietz extension theorem, and Gelfand–Kolmogoroff theorem.
The content of this volume is spread into eight chapters of which the last chapter conveys the history of metric spaces and the history of the emergence of the conceptsleading to the development of topology as a subject with their motivations with an emphasis on general topology. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power, and active learning of the subject, all the while covering a wide range of theories and applications in a balanced unified way.
1. Prerequisites: Sets, Algebraic Systems, and Classical Analysis.- 2. Metric Spaces and Normed Linear Spaces.- 3. Topological Spaces and Continuous Maps.- 4. Separation Axioms.- 5. Compactness and Connectedness.- 6. Real-valued Continuous Functions.- 7. Countability, Separability and Embedding.- 8. Brief History of General Topology.
MAHIMA RANJAN ADHIKARI, Ph.D., M.Sc. (Gold Medalist), is the founder president of the Institute for Mathematics, Bioinformatics and Computer Science (IMBIC), Kolkata, India. He is a former professor at the Department of Pure Mathematics, University of Calcutta, India. His research papers are published in national and international journals of repute, including the Proceedings of American Mathematical Society. He has authored nine textbooks and is the editor of two, including: Basic Modern Algebra with Applications (Springer, 2014), Basic Algebraic Topology and Applications (Springer, 2016), and Mathematical and Statistical Applications in Life Sciences and Engineering (Springer, 2017).
Twelve students have been awarded Ph.D. degree under his guidance on various topics such as algebra, algebraic topology, category theory, geometry, analysis, graph theory, knot theory and history of mathematics. He has visited several universities and research institutions in India, USA, UK, Japan, China, Greece, Sweden, Switzerland, Italy, and many other counties on invitation. A member of the American Mathematical Society, Prof. Adhikari is on the editorial board of several journals of repute. He was elected as the president of the Mathematical Sciences Section (including Statistics) of the 95th Indian Science Congress, 2008. He has successfully completed research projects funded by the Government of India.
Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.