-
DISPONIBILITÀ IMMEDIATA
{{/disponibilitaBox}}
-
{{speseGratisLibroBox}}
{{/noEbook}}
{{^noEbook}}
-
Libro
-
- Genere: Libro
- Lingua: Tedesco
- Editore: Springer Vieweg
- Pubblicazione: 02/2024
- Edizione: 1. Aufl. 2024
Generierung von Prüfzyklen aus Flottendaten mittels bestärkenden Lernens
ebel andré
80,98 €
76,93 €
{{{disponibilita}}}
TRAMA
André Ebel wertet Flottendaten eines batterieelektrischen Fahrzeuges hinsichtlich Fehlerbedingungen aus und generiert daraus unter Verwendung einer Gesamtfahrzeugsimulationsumgebung repräsentative Prüfzyklen zur zeitlichen Rekonstruktion der Fehlerbedingungen. Anhand der Flottendatenauswertung mit Methoden des Maschinellen Lernens identifiziert der Autor das schädigende Nutzungsverhalten fehlerhafter Fahrzeuge. Zur Generierung von kundennahen Prüfzyklen setzt er das tiefe Q-Lernen ein, ein Verfahren des bestärkenden Lernens. Die Kombination der Flottendatenauswertung mit der Prüfzyklengenerierung trägt zur zielgerichteten und realitätsnahen Erprobung von Antriebssträngen bei.SOMMARIO
Flottendatenauswertung.- Modellbildung und Simulation.- Prüfzyklengenerierung.AUTORE
André Ebel hat seinen Master of Science in Elektromobilität an der Universität Stuttgart abgeschlossen und ist seit 2015 wissenschaftlicher Mitarbeiter am Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS), wo er im Bereich Kraftfahrzeugmechatronik promovierte.ALTRE INFORMAZIONI
- Condizione: Nuovo
- ISBN: 9783658442194
- Collana: Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart
- Dimensioni: 210 x 148 mm
- Formato: Brossura
- Illustration Notes: XXXII, 188 S. 55 Abb.
- Pagine Arabe: 188
- Pagine Romane: xxxii