libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

cerquitelli tania (curatore); quercia daniele (curatore); pasquale frank (curatore) - transparent data mining for big and small data

Transparent Data Mining for Big and Small Data

; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
151,98 €
NICEPRICE
144,38 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 07/2018
Edizione: Softcover reprint of the original 1st ed. 2017





Trama

This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches.
As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.




Sommario

Part I: Transparent Mining.- Chapter 1: The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good.- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens.- Chapter 3: The Princeton Web Transparency and Accountability Project.- Part II: Algorithmic solutions.- Chapter 4: Algorithmic Transparency via Quantitative Input Influence.- Chapter 5.- Learning Interpretable Classification Rules with Boolean Compressed Sensing.- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey.- Part III: Regulatory solutions.- Chapter 7: Beyond the EULA: Improving Consent for Data Mining.- Chapter 8: Regulating Algorithms Regulation? First Ethico-legal Principles, Problems and Opportunities of Algorithms.- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring AlgorithmicAccountability?










Altre Informazioni

ISBN:

9783319852997

Condizione: Nuovo
Collana: Studies in Big Data
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XV, 215 p. 23 illus. in color.
Pagine Arabe: 215
Pagine Romane: xv


Dicono di noi