libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

dietzfelbinger martin - primality testing in polynomial time

Primality Testing in Polynomial Time From Randomized Algorithms to "PRIMES Is in P"




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
54,98 €
NICEPRICE
52,23 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 06/2004
Edizione: 2004





Trama

On August 6, 2002,a paper with the title “PRIMES is in P”, by M. Agrawal, N. Kayal, and N. Saxena, appeared on the website of the Indian Institute of Technology at Kanpur, India. In this paper it was shown that the “primality problem”hasa“deterministic algorithm” that runs in “polynomial time”. Finding out whether a given number n is a prime or not is a problem that was formulated in ancient times, and has caught the interest of mathema- ciansagainandagainfor centuries. Onlyinthe 20thcentury,with theadvent of cryptographic systems that actually used large prime numbers, did it turn out to be of practical importance to be able to distinguish prime numbers and composite numbers of signi?cant size. Readily, algorithms were provided that solved the problem very e?ciently and satisfactorily for all practical purposes, and provably enjoyed a time bound polynomial in the number of digits needed to write down the input number n. The only drawback of these algorithms is that they use “randomization” — that means the computer that carries out the algorithm performs random experiments, and there is a slight chance that the outcome might be wrong, or that the running time might not be polynomial. To ?nd an algorithmthat gets by without rand- ness, solves the problem error-free, and has polynomial running time had been an eminent open problem in complexity theory for decades when the paper by Agrawal, Kayal, and Saxena hit the web.




Sommario

1. Introduction: Efficient Primality Testing.- 2. Algorithms for Numbers and Their Complexity.- 3. Fundamentals from Number Theory.- 4. Basics from Algebra: Groups, Rings, and Fields.- 5. The Miller-Rabin Test.- 6. The Solovay-Strassen Test.- 7. More Algebra: Polynomials and Fields.- 8. Deterministic Primality Testing in Polynomial Time.- A. Appendix.




Autore

Univ.-Prof. Dr.(USA) Martin Dietzfelbinger (b. 1956) studied Mathematics in Munich and earned his Ph.D. from the University of Illinois at Chicago. In 1992, he obtained his Habilitation at the Universität Paderborn with a thesis on randomized algorithms; in the same year he became a professor of computer science at the Universität Dortmund. Since 1998, he holds the chair for Complexity Theory and Efficient Algorithms at the Faculty of Computer Science and Automation of the Technische Universität Ilmenau, Germany. His main research interests are in complexity theory and data structures.











Altre Informazioni

ISBN:

9783540403449

Condizione: Nuovo
Collana: Lecture Notes in Computer Science
Dimensioni: 233 x 155 mm
Formato: Brossura
Illustration Notes:X, 150 p.
Pagine Arabe: 150
Pagine Romane: x


Dicono di noi