libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

elsayed nourhan; saleh hani; mohammad baker; ismail mohammed; sanduleanu mihai - high efficiency power amplifier design for 28 ghz 5g transmitters

High Efficiency Power Amplifier Design for 28 GHz 5G Transmitters

; ; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
91,98 €
NICEPRICE
87,38 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 02/2023
Edizione: 1st ed. 2022





Trama

This book introduces power amplifier design in 22nm FDSOI CMOS dedicated towards 5G applications at 28 GHz and presents 4 state-of-the-art power amplifier designs.  The authors discuss power amplifier performance metrics, design trade-offs, and presents different power amplifier classes utilizing efficiency enhancement techniques at 28 GHz. The book presents the design process from theory, simulation, layout, and finally measurement results.





Sommario

Introduction.- Power Amplifier Fundamentals.- Doherty Power Amplifier Design.- Stacked Class-E Power Amplifier.- Doherty Class-E Power Amplifier.- Inverse Class-D Power Amplifier.- Phased-Array transmitter.





Autore

Nourhan Elsayed received her PhD Degree in Electrical and Computer Engineering in 2020, Khalifa University. She  received  her  BSc.  in  Electrical  and  Electronics  Engineering  in  2014  from Khalifa  University,  Abu  Dhabi,  UAE.  She  then  received her MSc. in Electrical Engineering from The Petroleum Institute,  Abu Dhabi,  UAE  in  2016.  Nourhan’s research work  is  in  RF  circuit design,  specifically high efficiency transmitter design for 5G applications. She has been working on multiple mm-wave designs in 22nm FDSOI including switching amplifiers and efficiency enhancement techniques.

 

Hani Saleh (SM’16) is an assistant professor of electronic engineering at Khalifa University since Jan, 2012. He is an active member in KSRC (Khalifa University Research Center) where he leads a project for the development of wearable blood glucose monitor SOC and a mobile surveillance SOC and safe exercise monitoring device. Hani published 81 articles in peer-reviewed journals and conferences, he has 11 issued US patents and 3 pending patent applications. Hani has a total of 19 years of industrial experience in ASIC chip design, microprocessor design, DSP core design, graphics core design and embedded system design. His experience spans DSP core design, microprocessor peripherals design, microprocessors and graphics core deign. Prior to joining Khalifa University he worked as a Senior Chip Designer (Technical Lead) at Apple incorporation; where he worked on the design and implementation of Apple next generation graphics cores for its mobile products (iPad, iPhone, …etc.), prior to joining Apple, he worked for several leading semiconductor companies including Intel (ATOM mobile microprocessor design), AMD (Bobcat mobile microprocessor design), Qualcomm (QDSP DSP core design for mobile SOC’s), Synopsys (a key member of Synopsys turnkey design group where he taped out many ASICs and designed the I2C DW IP included in Synopys DesignWare library), Fujitsu (SPARC compatible high performance microprocessor design) and Motorola Australia (M210 low power microprocessor synthesizable core design).

 

Baker Mohammad (M’04–SM’13) received the B.S. degree from the University of New Mexico, Albuquerque, NM, USA, the M.S. degree from Arizona State University, Tempe, AZ, USA, and the Ph.D. degree from the University of Texas at Austin, Austin, TX, USA, in 2008, all in electricaland computer engineering. He was a Senior Staff Engineer and the Manager with Qualcomm, Austin, where he was involved in designing high performance and low power DSP processor used for communication and multimedia application. He was involved in a wide range of microprocessors design with Intel Corporation, Santa Clara, CA, USA, from high performance, server chips >100 W (IA-64), to mobile embedded processor low power sub-1 W (xscale). He has over 16 years of industrial experience in microprocessor design with an emphasis on memory, low power circuit, and physical design. He is currently an Assistant Professor of Electronic Engineering with the Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates, and a Consultant with Qualcomm Inc., San Diego, CA, USA. In addition, he is involved in microwatt range computing platform for WSN focusing on energy harvesting and power management, including efficient dc/dc and ac/dc converters. He holds ten issued U.S. patents and has several pending patent applications. He has authored one book entitled Embedded Memory Design for Multi-Core and SoC and co-authored several publications in digital system design, memory design and testing, energy harvesting, power management, and power conversion, in addition to emerging memory technology modeling and design. His current research interests include power efficient computing, highyield embedded memory, and emerging technology, such as memristor, STTRAM, and computer architecture. Dr. Mohammad has served the IEEE in many editorial and administrative capacities. He is a member of the Technical Program Committee of several IEEE conferences, such as the International Conference on Computer Design, the International Conference on Environmental and Computer Science, and the VLSI-SoC Conference. He is a Regular Reviewer of the IEEE TRANSACTIONS ON VLSI SYSTEMS and the IEEE TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS. He is an Active Member of region eight student activities, including the Student Best Paper Competition, the UAE Chapter Student Day, and the KUSTAR Student Branch Advisor.

 

Dr. Mihai Sanduleanu received his MSc, MEE and PhD degrees from the Technical University of Iasi, Romania; Eindhoven University of Technology, The Netherlands; and the University of Twente, The Netherlands; in 1990, 1993 and 1999, respectively. Hereceive











Altre Informazioni

ISBN:

9783030927486

Condizione: Nuovo
Collana: Analog Circuits and Signal Processing
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XVI, 94 p. 91 illus., 70 illus. in color.
Pagine Arabe: 94
Pagine Romane: xvi


Dicono di noi