Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024.
The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on:
Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI.
Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI.
Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI.
Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.
.- XAI for graphs and Computer vision.
.- Model-Agnostic Knowledge Graph Embedding Explanations for Recommender Systems.
.- Graph-Based Interface for Explanations by Examples in Recommender Systems: A User Study.
.- Explainable AI for Mixed Data Clustering.
.- Explaining graph classifiers by unsupervised node relevance attribution.
.- Explaining Clustering of Ecological Momentary Assessment through Temporal and Feature-based Attention.
.- Graph Edits for Counterfactual Explanations: A comparative study.
.- Model guidance via explanations turns image classifiers into segmentation models.
.- Understanding the Dependence of Perception Model Competency on Regions in an Image.
.- A Guided Tour of Post-hoc XAI Techniques in Image Segmentation.
.- Explainable Emotion Decoding for Human and Computer Vision.
.- Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification.
.- Logic, reasoning, and rule-based explainable AI.
.- Template Decision Diagrams for Meta Control and Explainability.
.- A Logic of Weighted Reasons for Explainable Inference in AI.
.- On Explaining and Reasoning about Fiber Optical Link Problems.
.- Construction of artificial most representative trees by minimizing tree-based distance measures.
.- Decision Predicate Graphs: Enhancing Interpretability in Tree Ensembles.
.- Model-agnostic and statistical methods for eXplainable AI.
.- Observation-specific explanations through scattered data approximation.
.- CNN-based explanation ensembling for dataset, representation and explanations evaluation.
.- Local List-wise Explanations of LambdaMART.
.- Sparseness-Optimized Feature Importance.
.- Stabilizing Estimates of Shapley Values with Control Variates.
.- A Guide to Feature Importance Methods for Scientific Inference.
.- Interpretable Machine Learning for TabPFN.
.- Statistics and explainability: a fruitful alliance.
.- How Much Can Stratification Improve the Approximation of Shapley Values?.
Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.